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Abstract. In the present paper we give some relation of the number of zeros of a polyno-

mial mapping in C?with a jacobian of non-maximal degree and the number of branches at
infinity of one coordinate of this mapping.

1. Auxiliary facts

Let [, = V(TO) denote a line at infinity in the projective complex space P’
(with homogeneous coordinates 7}, : 7] : 7, ). Further it will be called infinity. If

acl, then by @eC? we denote the canonical image of the point a in affine

part P? \V(Tl)z C’. For a polynomial % of two variables, h signifies a suitable
dehomogenization of the homogenization of the polynomial /. So, we have
h(X,.X0) = X% h() X, X, [ X))

Let f,,f, and g be polynomials of two variables and let C,,C, be the closures,
respectively, of the curves V(f;).V(f,) in the space P?. Assume further that

polynomials f; and f, are different from constants and write n, =degf|,

n, =deg f,. We denote by J, = Jac(fl,fz) (respectively, J; :Jac(fl,fz)) the
jacobian of the mapping f = (f1 ,fz) (respectively, 7 = (71 ,72 )).

Fact 1. If degJ, <deg f, +deg f, —2, then (Cl uCz)mlo0 = (Cl mCz)mlw.
Proof. Let £, f," be the leading forms of the polynomials f;, f,, respectively. Put
fr= ( A f;) Since the degree of the jacobian J; is not maximal, then the jaco-

bian J .= 0. It means that the homogeneous polynomials f,", f," are algebraically

independent. Thus, there is a polynomial 4 of two complex variables of positive
degree without constant term such that o /% =0. Let

h(Y],Yz):ZUcU-I’l“"I’f’, where ¢, #0, o, + 5, >1
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For an arbitrary point (a,5)e C*\{(0,0)} we have
he £ (a.b).e™ £ (@,b))=0 for (e € 1)
If the point (0:a:b)e C, N1, then f;*(a,5)=0 and (1) reduces to identity
> d, (£ @) " =0, where d, #0. i, 21.1eC

It means that f, (a,b): 0 and the point (O a: b)e C,NI,. Analogously, if
(0:a:b)eCy 1, then (0:a:b)e C, NL,. This ends the proof.

Assume further that the polynomials £ and £, have not common factors of positive
degrees and the polynomial f; has not irreducible multiples factors. Then the ca-
nonical image a of a point a e (Cl mCz)mloo is an isolated zero of the mapping

]N‘ and the germ (]?1 )5 of the function ]N‘] in the point @ has reduced decomposition
[2]. Let

(7 =m...h, Q)

be suitable decomposition of the germ (/71)5 into irreducible single factors in the
ring of the germs of holomorphic functions in the point a. Write

u, =ord, b, and x, =mult, (4, f,) for 1<i<k

Fact 2. If x,—nyu, #0 for 1<i<k, then the germ (j p )a does not vanish identi-

cally on the set of zeros of all factors in the decomposition (2). In particular
J,#0.
S

Proof. Assume contrary that for parametrization @, ()= (t”’o N (t)) of zeros of
the factor /4 in the decomposition (2) we have .7 f(QJ (t)):O. Then according

o
to the formula (*) in [1] we have

mh 0, O, 0)- (o, (0)=0 6

From another hand we have also

(2, 0] Zeto, 0+, o, )0 @
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The equalities (3) and (4) have not zero solution, so

n2J7z(cD,0 (t))(t” o j — "0 (}2 (CD,O (t)))’ =0

and

(0,0 wl]
A E

Simple integration gives x; = n,;, which contradicts assumption.

2. Basic fact

Assume that the polynomial f; is irreducible and degJ, <deg f, +deg f, - 2.

Let g; denotes the genus of the curve C; and let q,,...,a, be the zeros at infinity of

the mapping f. According to the Fact 1 we infer that these zeros are exactly the
points at infinity of the curve C. In each point a, we have reduced decomposition

(J?l)ak:hl(k)hill:) for 1<k<s (5)

where 7, denotes the number of branches of the curve C; in the point g, at infinity.
Write

u‘gk):ordak hgk) and K‘ﬁk):mul‘[ak (hﬁ.k),fz) for I<j<p

Fact 3. Let p be the number of zeros of the mapping f and q the number of zeros
of the mapping (fl,Jf) with respect of the multiplicity. If K‘E-k) —n, ,ugk) =0 for

1<k<s and 1<j<r,, then p+ Zi:lrk <qg+ 2(1 — gl). Moreover the number
p+ ZZ=1Vk —q Is even.

Proof. For every point a, define non-negative integer
1
@:EUQ+4—0

where M, is the Milnor number of the curve V(fl) at the point g, [3]. Summing
we have

S 1 S 1 s
Zk:lék :EZk:le +E(Zklrk _S) (6)
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For every function h‘gk) from the decomposition (5) denote by

(t) Et / ,goj (t)j the parametrization of its zeros. From the formula (*)

in [1] it follows that

1T (@90) = 7 (000 2 af1< 01 090) )

where o =n, +n,—2—degJ, >1. From another hand we have

17 (000)= (7, (0! 00) 2 % (@" () ®)

From (7) and (8) we have

W5, 0010)= L0 il 700 0)+ 700 |

2

» ®)
Since fz(d)(Jk )(t)):ct /" + higher terms, where c#0 and ng) -n, ,uﬁk )20, the
order of the second factor on the right side of the above equality is equal K‘ﬁk )

Taking into account of both sides we have

uf-k)o +ord, .7f (@Sk)(t)) ord, 8)]; (d)(k (¢ ))+ x®)

J J
2
and summing
1y 1y aN 1y
02 - 1'“1 )4 Z * ord Jf (q)(Jk)( ))— ijzl ord, %(@S“(t)ﬁ ij:lk‘(/k)
2

SO

Gord;,k J71 + multak (}DJ ) multak [f], )f(l j+ multak (}1,}2)

2
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From the Teissier lemma [3] we infer that
~ o, ~
mult;, [fl’a_XlJ =M, +ord, fi—1
thus
(0' —1)ordak 71 +mult;, (ﬁ,jf):Mk +mult;, (]71,72)—1 , 1<k<s

Summing the above equalities over all points at infinity we have

(0 - l)nl + multw(fl,Jf ): ZZ:le + multw(fl,fz)— S

By the Bezout theorem

multw(fl,.]f): mdegJ, —q and mult, (£, /,)=mn, — p
From the above we conclude

(”1 _3)”1 :Zzlek tq-—p-—s
and
(nl —1)(}11 _2)222:1Mk +tq—p—s+2
which gives
1

S0 -2)=3 %) M+ g o)+ ©

Subtracting (6) from (9) we have

1

S0 =0 -2-3 5= a3 e

In the above equality the number on the left hand side is non-negative integer not
less than g; [3]. Thus

q-pP=2, 5228 -2

which proves the fact.
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