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Abstract. We will construct the sequence of discrete measures almost representing points 

of certain compact convex sets and supported by extreme points of that sets convergent in 

the weak
*
 topology to a discrete measure which represents point of a compact convex set 

and is supported by its extreme points. 

1. Definitions 

By T we will denote the metric space, by X - n-dimensional Euclidean space 

(although definitions and facts below can be stated in a more general setting). 

1) We say that: 

a) a set XA⊂  is convex, if whenever it contains two points, it also contains 

the line segment joining them; „algebraically speaking” A is convex, if 

Ayx ∈−+ )1( λλ  whenever Ayx ∈,  and 10 ≤≤ λ ; 

b) a point Ae∈  is an extreme point of A if and only if whenever 

,10,,,)1( <<∈−+= λλλ Ayxyxe  then x = y = e (by ext A we will denote 

the set of extreme points of A); 

c) the convex hull of XA⊂  (denoted by conv A) is the set of all convex com-

binations of points of A  
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2) Let XA⊂  be a compact convex set, Ax∈  and .0>γ  We say that: 

a) a regular probability Borel measure µ on X represents point Ax∈  if the 

equality ∫=
A

fdxf µ)(  holds for all *Xf ∈ ; 

b) a regular probability Borel measure µ on X γ - represents point Ax∈  if the 

inequality γµ <− ∫
A

fdxf )(  holds for all *Xf ∈ ; 
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3) Denote by Cb(X) the set of all continuous bounded real functions on X. This 

set with the supremum norm given by the formula ( ){ }Xxx ∈= :sup: ϕϕ  is 

a Banach space. By M(X) we will denote the space of all probability measures 

on the σ -algebra B(X) of the Borel subsets of X. Take any such measure 

and consider the family of sets of the form ( ) =:,...,,,...,
11 kk

V εεϕϕ
µ

 

( ){ },,...,1,: kiddXM
iii

=<−∈= ∫ ∫ εµϕνϕν  where the functions ( ),XC
bi

∈ϕ  

.,...,1,0 ki
i

=>ε  The family of all such sets is a base of a topology on M(X), 

called ”the weak*-topology”. The generalized sequence ( )
α

µ  of measures 

converges to the measure 
0

µ  in this topology iff ∫ ∫→ 0
µϕµϕ

α
dd  for any 

( ).XC
b

∈ϕ  

4) A multifunction P is a mapping from the space T into nonempty subsets of 

a space X. Let .XA⊂≠∅  We will use the following notation: 

( ) ( ){ }

( ) ( ){ }∅≠∩∈=

⊆∈=

−

+

AxPXxAP

AxPXxAP

::

::

 

We say that multifunction { }∅−→
X

TP 2:  is: 

a) lower semicontinuous, if the set ( )VP −  is open in T for every V open in X; 

b) upper semicontinuous, if the set ( )VP +  is open in T  for every V open in X; 

c) continuous, if it is both lower- and upper semicontinuous. 

5) Let P be a multifunction. A selection of P is a single-valued mapping 

XTp →:  such that for any Xx∈  there holds ).()( xPxp ∈  

2. Facts 

In this section we state without proof more or less known facts which will be 

needed in further considerations. 
1) (Krein-Milman theorem) A compact convex set XA⊂  is equal to the convex 

hull of its extreme points (X - finite dimensional). 

2) A multifunction { }∅−→
X

TP 2:  is lower semicontinuous if and only if for 

every sequence Tt
n
⊂)(  and any point )(

00
tPx ∈  there exists sequence 

Xx
n
⊂)(  convergent to 

0
x  and such that ).(

nn
tPx ∈  

3) (Michael selection theorem) Any lower semicontinuous multifunction from 

a paracompact space into space of nonempty subsets of a Banach space with 

closed convex values has a continuous selection. 
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3. Construction 

Let T be a metric space, X − n dimensional Euclidean space, { }∅−→
X

TP 2:  - 

continuous multifunction with compact convex values. In this case multifunction 

)(ext tPt→  

is lower semicontinuous (see [3]). 

Choose and fix γ > 0 and a continuous selection )(⋅p  of ).(⋅P  

Let (tn) be a sequence in T, convergent to the point (t0) ∈ T. Consider point 

)()(
00
tPtp ∈ . By the Krein-Milman theorem there exist points ),(,...,

01
textPaa

m
∈  

positive numbers ,1,,...,

1

1
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=
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λλλ  such that .)(

1

0 ∑
=

=
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i
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atp λ  Then we can check 

that the discrete measure (i.e. the measure being a convex combination of Dirac 

measures) ∑
=

=

m

i

ai i

1

0
: δλµ represents point p(t0). As multifunction )(⋅extP  is lower 

semicontinuous, then for any 
i
a  there exists sequence )(ext

n

i

n
tPb ∈  convergent to 
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and let ).(XC
b

∈ϕ  We then have 

( ) ( ) 0

1

0
 →−≤−
→∞
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This proves that the sequence (µn) converges weakly* to the measure (µ0). 

Moreover, for any 
∗

∈ Xf  we have 

( ) ( ) ( ) ( )

∫∫

∫∫

−+

+−+−≤−

)()(

0

)(

000

)(

0

0

)()()()(

n

n

tP

n

tP

tP

n

tP

nn

fdfd

fdtpftpftpffdtpf

µµ

µµ

 

The term on the right converges to 0, the second equals 0 because measure µ0 rep-

resents point ).(
0
tp  For the third term there holds 
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Hence there exists natural number n0 such that for each n ≥ n0 the measure 

µn γ - represents point ).(
n
tp  Finally, by construction, ( ) .1)( =

nn
textPµ  
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