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Abstract. The domain of tissue is subjected to the actioele€trodes located on the skin

surface. External electric field causes the heagggion in tissue domain. The distribution of
electric potential in domain considered is describg the Laplace equation, while the tem-
perature field is described by the Pennes equalibase problems are coupled by source
function being the additional component in Penmgsgaton and resulting from the electric

field action. The coupled problem is solved using boundary element method. In the final
part of the paper the examples of computationstzwan.

1. Governing equations

In Figure 1 a typical radio frequency (RF) hypenthi@ system is shown [1]. The
mathematical model of the process analyzed corwfistgo parts [1, 2]. The electric
part concerns the Laplace equation to obtain thetré field distribution. The ther-
mal part is connected with the bioheat transferaggn to obtain the temperature
distribution. In the bioheat transfer equation #uglitional source term associated
with the heat generation caused by electric figdttibution appears.
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Fig. 1. Action of electric field on biological tiss
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The potential inside the tissue is described by Hmace equation
(x y)m : O [e(x y)o(x y)]=0 (1)

wheree(x, y) [C?/(Nm?)] is the dielectric permittivity of tissue.
On the external surface of tissue being in a contih the electrodes the following
condition is accepted:

(x, y)I ;0 o(x yF U
(x, y)OI ,: o(x yF-U
whereU [V] is the electric potential of the electrodeatale to the ground.

On the remaining external boundary of the tissweideal electric isolation is as-
sumed:

(@)

deley) g 3)
on
The electric field inside the tissue is describg@guation
dp(x, y)
E(x y)=-Oo(x v} | , O @
d9(x, y)
oy

Heat generatio® [W/m®] due to the electromagnetic dissipated powersisut:
depends on the conductiviy{ S/m] and the electric fiell [2]

olx, y)= Ex A :Sl("q’(x’ V)T {"‘P(X’ y)ﬂ (5)

2 2 0x ay

The temperature field in the domain considereceiscdbed by the Pennes equation
[1,2]

(% y)@ : B°T(%¥) GuGs[Ts-T(x ¥)]+Qu +Q(x,¥)=0  (6)

whereT denotes the temperatukg)W/(mK)] is the thermal conductivityGg [1/s] is
the perfusion rategs [J/(nTK)] is the volumetric specific heat of blood is the
supplying arterial blood temperature which is tdaBs a constanQ.y is the
metabolic heat source.

On the upper and lower surfaces of tissue domdim @urface) the Dirichlet
condition is assumei(x, y) = Ty, whereT, is known temperature, on the remaining
internal boundaries of tissue the adiabatic camulittan be taken into account:
—AOT (X, y)/on= 0.
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2. Boundary element method - electric field

The boundary integral equation corresponding teetiwation (1) is following [3]

B(& m)o(& )+ [w(x y)o (&, x y)dr=

. (7
fo(x y)v' (&, x y)dr

where §, n) is the observation point, the coefficiddf, n) is dependent on the
location of source poin€(n), y(X,y)=—edo(X,y)/on.
Fundamental solution of the problem discussedhmfotiowing form

1 1
= |n= 8
2ne ®

¢ (&%)
wherer is the distance between poin{§, n) and(x, y). Differentiating the func-
tion ¢ (&, X, y) with respect to the outward normalz[cosa, cosﬁ] the func-

tion v (& n, X, y) is obtained

o’ (é, m X, y) _ d )
on 4nr?

‘V* (é’ m, X, y) =€
where

d =(x-¢&)cosa +(y —n)cosB (10)

The boundary of the domain is divided iMftbboundary elements. For constant
boundary elements it is assumed that

. (P(Xv y)z(P(Xj’ yj) =0,

(x y)OT (11)
v(x y)=w(x. ) =v,
and then one obtains the following approximatioiqfiation (7)
N N
D> Gy, =) Hyp;, i=12,.N (12)
=1 j=1
where
G =[o (& m,x y)dr, (13)

T

and (#])
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Hy = [ (& n % y)dr, (14)

r

while Hii= -1/2.
The system of Equations (12) can be written imtla¢rix form

Gy =He¢ (15)

This system allows to determine the ‘'missing’ bamydalues of function, ;.

Next, the values of functiod at the internal point@;i : ﬂi) can be determined using
the formula

N N
¢, =Y Hio, => Gyy;, i=N+LN+2,..N+L (16)
j=1 j=1

It should be pointed out that in order to deterntireeelectric field inside tissue (Eg-
uation (5)) the partial derivativedop, (X, y)/0x, dy.(x, y)/dy must be known.

One of the possibilities is application of equati@ for internal nodes (e”;, n)
(B(&,m)=1) and then

99 (& m) _ To(x ) oy (& % y) ar -y (xy) 09 (& . %, Y) o a7

o dE ) on
and
awS‘; n):!q)(x’ y)aw* (a,a:, X, y) dr—l\v(x, y)a(p* (g,ag, X, y) o (18)
where
0" _ X_i, 0 _ y=n (19)
0% 2mer on 2mer
and

oy’ _ 1[2(x-¢&)d com| oy _1[2(y-n)d _cos (20)
08 2n r r2 |" om 2n r r2

Applying previously presented discretization of thmundary of domain, numeri-
cal calculations of partial derivatives are nofidiflt to obtain. These derivatives
are determined at the internal nodes.
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3. Dual reciprocity boundary element method - temperaturefield
The Pennes equation (6) can be written in the form
(xy)@ @ BT(xy) dT(x, ¥ Q(x,yy O (21)
where
9=GgCs Q% ¥)=0T; +Qu +Q.(x, Y) (22)

The standard boundary element method algorithmsleadhe following integral
equation [2, 3]

B(&, )T (& )+ [a(x y)T" (& n x y)dr =

. . (23)
[T(xy)a (& m x y)dr+[[Q(x,y) - gT (x.y) T (& n. x, y)d@
r Q
where
. 1 1
T =——In= 24
(&% y) = - (24
and
R oT’ (a, m X, y) d
= —7\‘ = 2
9 (&%) e (@5)
while g(x, y)=-AaT (x, y)/an.
It should be pointed out that the functiiﬁh(e’;, n X, y) fulfills the equation
ADPT (& m, %, YE= 8(& n, X, V) (26)

where (&, n, x, y) is the Dirac function.
The solution of Pennes equation (21) can be writea sum

T(xy)=T(xy)+U(xy) (27)
where the first function is the solution of Laplacequation
A0 (x, yE O (28)

andU(x, y) is a particular solution of equation
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AD%U (% v} gU (x, Y} Q(x,yF O (29)
From Equations (27), (28), (29) results that
T(xy)=U(xy) (30)

In the dual reciprocity method the following apgroation is proposed [4]

N+L

Q(x y)-gu (x, y)=-k§:;akfk(x,y) (31)

wherea, are unknown coefficients arfigx, y) are approximating functions fulfilling
the equations (c.f. Equation (29))

ADU (% YE fo(xY) (32)

Putting (32) into (31) one obtains

N+L

Q(x, y)-gu(x,y)= —xZakDZUk(x, y) (33)

In Equations (31), (33)+L corresponds to the total number of nodes, wNeage
the number of boundary nodes dni$ the number of internal nodes.
We consider the last integral in equation (23)

D =I[Q(x, y)—gT(x, y)]T* (& m %, y)dQ (33)

Taking into account the dependences (30), (33)pbraEns

N+L

D=-> [[arPU,(x y) [T (&, x y) @ (34)

k=1

Using the second Green formula [3] one has
N+L
D=-Y akj[sz* (& x y) U (xy)@-
k=1 Q
N+L . aU X,
o i e )5 e
k=1 r n
N+L aT* ’n’ X, y
Zaijuk (x, y)#dr
k=1 r

Because (c.f. formula (26))
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[0 (& % ) Ui (x. y)@ =
Q (36)

-[[3(2n %, y)U, (. y) 6@ =-B(&, n)U, (&, )

SO
D= aB(&n)U, (5 n)+
@)
>3 J[T (&0 % Y)W (x,y) ~U (%, ¥) (&0, %, y) ]d
where
W, (x, y)= _x—au ka(:’ Y) (38)

Taking into account the formula (38) the Equati®8)(can be written in the form

B(&n)T(& )+ [T (&n x y)a(x y)dr =

N+L

jq X Y)T (% y)d+ 3 8 B(& Uy (& )+ (39)

N+L
k 1

ITé‘”le) (Xyd'ICIénxy) (,y)d‘}

For constant boundary elements the following agpmaton of equation (40) can be
taken into account € 1, 2, ..IN, N+1,...,N+L)

N N+L N N
BT +> Rq, ‘ZRJTJ +Zak(BU.k +> RW, - RJUij (40)
j=1 j=1 j=1
where

(41)

and

R = [d (&, x)dr, (42)

while B =B(&;,n;).
We define [5, 6]
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e T
U K :7 +3 (43)
where
2 2
=% =% ) +(v -v) (44)
Using the formula (39) one obtains
U,
0x, 1.1
W, :—k[cosxj cosﬁJ 6Ul.k :dek(a +5rjkj (45)
|
ay,
where
dye = (% =x; Joosu; +(y, -y, )cosp, (46)
Because
2
0U = Uy U;‘<+ azujk— B org (47)
axlk aXZk
so on the basis of equation (32) one has
fy = fk(XS,yS):X(1+r§<) (48)
Taking into account the dependencies (30), (31)otm&ins
N+L
gTs - Qs = Z ak fsk (49)
k=1

whereT, =T(x,,y,) andQ, =Q(X,,Y,) . The system of Equations (50) can be writ-
ten in the matrix form

ng - Q1 ) f11 f12 f1N+|_ a
gly —Qq = fN,l fN,z fN,N+|_ ay (50)
_gTN+|_ _QN+L_ _fN+|_,1 fN+|_,|_ fN+L,N+L__aN+L_

or

gT -Q=fa - a=f"*(gT -Q) (51)
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The following matrices of dimensiofs-LxN+L can be defined

where

and

[ I:?Ll P12 PlN O
P: I:)N,l I:)N,Z PN N O
I:)N+1,1 I:)N+1,2 I:)N*'lN O
_PN+L,1 I:)N+L,2 I:)N+L,N O
I R11 R12 RlN 0
nol Ru o Ru Rin O
RN+1,1 RN+1,2 RN+1N -1
_RN+L,l RN+L,2 RN+L N 0

R, i # ]

Ri=14 o

R; -0.5, i=]
i Ull U12 UlN UlN+l
UN,l UN,Z UN,N UN,N+1

,2

_Vvll W12

W - WN,l WN,Z
0 0

0 0

UN+1N UN+1N+1

UN+L,N UN+L,N+1
Wy Wi, ,
W W
0 0
o o

0

So, the system of Equations (41) can be writtgheémmatrix form

(52)

(53)

(54)

(55)

(56)
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Pg=RT +(PW -RU)a (57)
or (c.f. formula (52))
Pg=RT +(PW -RU)f *(gT -Q) (58)
where
o
On
= 59
a=| (59)
. O .

This system of equations allows to find, among ththe temperatures at the
boundary and internal nodes.

4. Results of computations

The rectangular domain of dimensions ®®.04m has been considered. The
heating area is described as {0.08% < 0.048,y = 0 m}, {0.032< x < 0.048,
y = 0.04m} and the voltage applied on these surfaces is 408-10V, respec-
tively. For biological tissue the following pararaet have been assumed: thermal
conductivity A = 0.5 W/(mK), perfusion rat€&sg = 0.0005 1/s, metabolic heat
sourceQme = 420 W/ni, blood temperaturéz = 37°C, volumetric specific heat of
blood cg = 4.2 MJ/(nMK) [2]. On the skin surface the temperature
T = 32.5C has been accepted. At first, the temperatureilalision in the tissue
without electric field influence under the assurmptthat on the external surface
60 constant boundary elements have been distingaii@¥ig. 2).

L 34.0 34.0 34.0
L 345 34.5 345 — |
————— 345 34.5 34.5 —

34.0 34.0 34.0 —]

Fig. 2. Temperature distribution without electrad
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The distibution of electric field is shown in FiguB, while Figure 4 illustrates
the temperature field in the tissue subjected ¢atdt field. The source function
Qe under the assumption that 0.4 S/m (Equation (5)) is shown in Figure 5.
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Fig. 3. Electric field distribution
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Fig. 5. Source function due to the electric field
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Summing up, the boundary element method has bgaiedgdo solve the cou-
pled problem connected with the biological tissweating. The simplified 2D
mathematical model based on the Pennes equati@iesugnted with an equation
determining the electric field due to the exterekgctrodes action has been con-
sidered.
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