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Abstract. Problems connected with the mathematical desonmf pure metals solidification
(macro approach) are often called the Stefan ombs. second generation models (mi-
cro/macro approach) discussed in this paper basa theory presented by Kolmogoroff
(Mehl-Johnson-Avrami-Kolmogoroff models). Both ma@nd micro/macro problems can be
analyzed using the numerical methods. The aim\adsiigations presented here was a com-
parison of numerical solutions obtained by use atmm and micro/macro approach. On a
stage of numerical modelling the finite differemaethod has been applied.

1. Governing equations

Solidification of pure metals or eutectic alloy®peeds at a constant tempera-
ture (solidification poinfl’). The mathematical macroscopic model of the pmces
discussed is called in literature 'the Stefan mobl[1-3]. The domaim) being
a sum of molten metaQ,(t) and solid stateQ, t( ub-domains is considered.

The position of interfacé , t ( }s time-dependent. So the Stefan problem belongs

to a group of moving boundary ones. The temperdiefé in domain of molten
metal is described by the well known Fourier ecprati

0T, (X,t)_

T O[A M OT,(x,1)] (1)

¢ (T)

wherecy, A; are the volumetric specific heat and thermal catidity of material,
T, X, t denote the temperature, spatial co-ordinatesiara t
The similar equation determines the temperatutd fiea solidified part of metal

0T, (x,t)_

Py O[A,MOT,(x,1)] )

c,(T)

where c,, A, are the volumetric specific heat and thermal catidily of solid
body.

It should be pointed out that only heat conduciiorQ is considered (it results
from the form of equations (1) and (2)). On theifacel;, { )the following



186 R. Szopa, E. Pawlak, J. Siedlecki

boundary condition is taken into account

0T, (x,1) 0T, (x,t)
A =-\, —2 +Lv 3
TR e : 3)
wherelL is a volumetric latent heat, is a solidification rate in a normal direction,
d/dn denotes a normal derivative (Figure 1). Additibpahe temperatures

T,(X,0) =T, (x,t) =T .

Fig. 1. Domain considered

On the outer surface of the system the boundargitton in general form

q{T2 (x,0), —"Tg(:’t)} =0 (4)

is given. The initial temperature distribution athe initial position of interface are
also known.

In literature one can find the analytical solutminthis problem. They concern
the very simple geometrical and boundary conditiéms practice the problem of
pure metals solidification can be solved usingrttmerical methods.

The other approach to the Stefan problem results ftbe considerations
concerning the crystallization processes proceeidirymicro scale (micro/macro
model of solidification). Then one considers thikofwing energy equation

3 f5(x,1)
ot

0T (X,t)_

o O[AM)OT(X, 1) +L

c(T) ()

wherefsis a volumetric solid state fraction at the paint

The energy equation (5) is the typical Fourier déiqnawith additional term
(source function) controlling the evolution of lateheatl, but the capacity of
internal heat sources results from the laws detengithe nucleation and nuclei
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growth (micro-scale). Here, the model basing onabsumption that the kinetic of
nucleation and nuclei growth are proportional t@ thndercooling below the
solidification point are discussed [3-5].

So, the function

w(Xx,t) = N(x, D)V (x,t) (6)

whereN - grains density [nuclei/fy V - a single grain volume is introduced.
Denotingu =dR/dt (u is a crystallization ratd is a grain radius) we have

w(x,t):%nv N(x,t)ﬁu(x,T)dT} )

at the same time for spherical grans 1, for other types of crystallization< 1.
The exponential model of crystallization proposeg Mehl-Johnson-Avrami-
-Kolmogoroff bases on the formula [3-5]

fs(Xx,t) =1—exp[ —oo(x,t)] =1-exp —gnv N(x,t)ﬁu(x,r)dr} (8)

The nucleation and nuclei growth are determinethbyfollowing dependencies
NGGH)=0 AT? (0 =0 [T =T (©)
wheren is a nucleation coefficient

dR(x,1)

m =u AT™(X,t) (10)

wherep is the growth coefficienn [ [1,2].
The nucleation process stops wheh (x,t + At) <AT x t ([6].)

In numerical realization the solution of micro/mmaaolidification model can be
obtained in different ways (see: [6, 7]).

2. Numerical aspects of Stefan and micro/macro models solution
The Stefan problem (macro model of solidificatian)golved here using the nu-

merical procedure called a Temperature Recoverhdde{TRM). The TRM is not
new [3, 8] and it has been known for more then &ry. In its initial version it was
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used for numerical computations of typical Stefewbfems, at present one can find

the generalizations concerning more complex problEng. solidification of alloys).

Let us assume (it is not necessary) that the thamgsical parameters of liquid
and solidified part of domaifd are constant and equal. The ‘reserve’ of tempertu
is defined as the quotient of the volumetric latesatL to the volumetric specific
heatc (more precisely to,), this means

6:L (11)
o

The domain considered is divided into control vaégmvhich central nodes we de-

note asx. At the moment = 0 the temperature at this point correspondeggbur-

ing temperature as well as the temperature resesudts from (11).

On the basis of the optional numerical method we f discrete temperature
field at the set of points; for successive levels of time. If during the intgdr
At=t"" -t" the temperaturd,’™ at pointx decreases below the solidification
point then it is assumed that the temperature iatpbint is equal taf and the
reserve of temperature must be decreased, nagly=6, - 26", where
A =T" -T,". So, the temperature field obtained at titié' is corrected in
following way:

i.  For the nodes in whicfi, ** >T_ , the temperature resere is untouched and
equal to its initial value. The calculated tempema\t'l'if+1 is, of course,
accepted.

ii. For the nodes in whichT," >T and T, <T" it is assumed that
T.""" =T" and the TRM procedure is initiated.

iii. For the nodes in whicfi," =T", T <T" and 8/ > 0 it is assumed that
TOf+1 =T and the temperature reserve is decreased accottingormula:
eif+1 :eif _(T* _Tif+l)'

iv. For the nodes in whichT," <T" and 8/ < 0 the obtained value of
temperature is accepted.

Corrected in this way temperature field @ illustrates the thermal state in
casting domain at the moment™, as well as this constitutes a pseudo-initial
condition for the next step of computations. Thenpretation of TRM in the system
enthalpy-temperature is shown in Figure 2 [9].

The main problem of micro/macro model numericalisoh is connected with the

source function computations. The domain considestteslild be divided intm

control volumesAV, (they, as a rule, correspond to internal cellslteg from the
domain disretization). The time mesh, namely

0=t’<tl<t?’< .. <t <tM< . . <tF, At=t"-t' (12)

is also introduced.
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Fig. 2. Interpretation of TRM

time tf time tf*1

Fig. 3. Constant number of nuclei

The local temporary values (xi(A\/i tf ) result from (7). In this place the following
assumptions can be introduced [4, 6]:

— aconstant number of nuclél (A\/i ,tf):const. (Fig. 3),

- formula (9) is applied, but for every time step ttuglei radius is averaging,

- formula (9) is applied and the ‘vicissitudes' otcassive grain families are
registered.

In this paper we use the simplest version of chysdsion model, this means the

constant number of nuclei has been taken into atcou
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3. Example of computations

As an example the cylindrical aluminium casting hasn considered (Fig. 4).
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Fig. 4. Shape of domain and its discretization

The casting is produced in the typical sand mix lsho@n the lateral surface of
mould the Robin condition has been assuned (0 W/niK), the similar condi-
tion is given on the upper surface of domain=(50 W/nfK). The bottom plate is
insulated § = 0). The computer program for axially symmetridamain bases on
the FDM algorithm (an explicit scheme is applieihe Stefan model and mi-
cro/macro one is considered € 10° nuclei/n?, p=300°m/skK?. Initial tem-
perature of molten metdl, = 680°C, solidification poinT~ = 660°C, initial tem-
perature of mould, = 20°C. The remaining input data are taken from [3

866

T[9C]

wlr, 18]

Fig. 5. Cooling curves at points a, b, ¢
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In Figure 5 the cooling curves (micro/macro modljhe points a, b, ¢ - as in
Figure 4 are shown. The typical feature of the tsmuobtained on the basis of
Kolmogoroff model is the visible undercooling beltire solidification point. This
phenomenon is confirmed by the numerous experiments

The differences between the Stefan problem solyfianthe same input data)
and the micro/macro model are shown in Figuresdb7amhe solid lines illustrate
the changes dk corresponding to the micro/macro model while thmlsols cor-
respond to macro approach. The comparison conteenunctionfs because the
temperature profiles are very close.

The solution of macro model has been found by ¢ogpdf FDM algorithm
with TRM procedure. For aluminium the initial valoé 6 equals 325 K and the
solidification process stops when local valueBofchieves 0. The TRM allows
a certain free choice on a stagdgdefinition. It is possible to introduce the value
being the ratio of temporary and local valu@ab its initial value

f+1
6-> A8
k=0
—_ k=0 13
M 5 (13)

and then functioff fulfilling the condition fq D[ 0,1] can be defined as follows
fg=1-p°, p>0 (14)

In Figures 6 and 7 the changesfght the points b, ¢ fop = 1 andp = 3/4 are
shown.
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One can see that assumptipr 3/4 assures a good conformability of both solu-
tions, but the proper choice pfon a stage of input data definition is rather isypo
sible. In spite of this the differences between setutions presented even in the
casep = 1 are not big. From the physical point of vidwe imicro/macro approach
is more exact and closer to the real course ofliicttion, but in practice the so-
lution basing on the Stefan model is also accegptabl
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