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Abstract. Presented paper is focused on results of numesatation of transient heat con-

ductivity equation in two-dimensional region. Coatten term is neglected in mathematical
model of the phenomenon. Solutions based on clSSalerkin finite element formulation

obtained for girds of different qualities are comgzhto discontinuous Galerkin method.
Spatial discretization of computational domain ander of basis functions are taken into
account.

Introduction

High accuracy of numerical solutions of differehtguations is one of the pri-
ority in modern calculation techniques commonlyngsin engineering practice.
From among of many advanced numerical methods exppbi calculation most
often finite difference method FDM [1, 2], finitdeenent method FEM [1, 3, 4],
boundary element method BEM [5], finite volume noetiFVM [6] are used. In
the last decade the huge growth interested of disumus Galerkin method
DGM, which can be localized among FEM and FVM, liserved. In 1973, Reed
and Hill [7] and also independently Lesaint and iR&\[8] described DGM. The
name of the method concerns to locality of usedtsni, which can take into con-
sideration discontinuity in scale of particularmbnt. FEM allows to obtain only
global solution for all nodes in the grid, while BGoermits to get local solution
for single element. Appropriate introduction of bdary condition on the edges of
finite elements leads to continuous as well asadisouous solution. This feature
of the method enables to use meshes containinggithgmodes” in calculation
process. Mesh refinement (h-adaptation) and mesbhement (p-adaptation) are
also easier. In presented paper results for FEMDR@EM implemented for tran-
sient heat transfer problem with Newton boundanydition in square testing do-
main are presented and compared.

1. Formulation of the problem

Partial differential equation of heat diffusion iwo-dimensional domain is
considered and written in following form
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where T[K] denotes temperaturg,[s] - time, A [W/mK] - thermal conductivity,
c[J/kgK] - specific heatgkg/m?] - density.
Equation (1) are completed by appropriate boundangition:
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wheren is a direction of vector normal to the externalibdary, a [W/m?K] de-
notes heat transfer coefficient afg]K] is ambient temperature.
Initial condition are defined as follows:

T|t=0 =To (3)

whereT, [K] is initial temperature.

In discontinuous Galerkin method procedure leadingpatial discretization of
differential equation is similar to analogous prhaes employed for finite element
method. Equation (1) after multiply by weightinghfitionw and integrate ove®
domain is written in weak form:

Aj[a—vvdaljdgmj ow T dQ—ij(T)mdr—cpJ'wa—Tzo (4)
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DomainQ after spatial discretization procedure is divid®o N elements:

Q=]J9o, (5)

SolutionT is approximated in interior of element using palgmal functions of
p degree. Basis functions are orthogonalL%(Q,—) space [9]. Because of disconti-
nuity in solution appearing on the edges of elenmermerical flux must be intro-
duced. Value of the flux depends on solufigfy), T(Q) obtained for elements
Q;, Q which shard’j, edge and it may be written in following form

F.(rQ;)T(@)=F()m (6)

Integral terms occurring in equation (4) may becgklted using one of the
commonly used method of numerical integration |3, 4
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2. Examples of calculation

Testing square shaped domain 0.2x0.2 [m], introdusciial, boundary condi-
tions and material properties are presented inrBigu

9,=0 [W/m’]

Ti=0 [°C]
£ £
E Material properties: E
< A,=23 [W/mK] <
S c=837 [J/kgK] S

p=6915 [kg/m’]

a=1000 [W/m’K], T,,=300 [K]

Fig. 1. Geometry of the testing domain

Calculations were performed on structural grid$wiifferent quality of spatial
discretization. DG method was tested on grids mptesein Figure 2, on gird
10x10calculations were realized for= 2,3,4, on grid 20x20 fop = 2,3, on grid
40x40 forp = 2, where p means order of approximation. FEM teated addition-
ally for grids 80x80 and 160x160, the last solutieas treated as a exact solution.
Calculations in all cases were performed for 10Qvith constant time step
At=0.01s.
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Fig. 2. Spatial discretization of the testing dam&dx10, 20x20, 40x40

In DG method accuracy of temperature approximaticreases along with po-
lynomial’s interpolation order as well as numbeiirgérpolation nodes in the inte-
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rior of finite element (Fig. 3). Relation betweartarpolation ordep and node
numbem describes following formula

n=05(p+1(p+2) (7)

Fig. 3. Distribution of the interpolation nodestirangular element for p = 1..4

Changes of temperature in function of time on thatéd wall are presented in
Figure 4. Accurate results obtained with FEM weaigd on 40x40 mesh. DGM
allows to obtain accurate results on 10x10 mesh patynomial ordep > 2.

Temperature values on heated boundaryt forl0, 25, 50, 100 s are compiled
in Table 1. In the last column the most accuraselts are presented.

Table 1.
Comparison of temperature results obtained for heated boundary
80x 160x
T,s 10x10 20x20 40x40 80 160

p=1] p=2] p=3] p=4 p=1 p=P p=p p1 =p | p=1] p=1

10 54.6 78.4 74.5 74.0 69.5 74.6 742 734 742 074.74.2

25 95.4 105.6| 104. 104. 1041 1046 104.6 104.304.51| 104.5| 104.5

b
50 128.9| 131.4| 131.4 131.4 131]1 1313 1314 13113314 | 131.3| 131.4
100 160.0| 159.8] 160.¢ 160.p 1599 1599 16D.0 159B60.0 | 159.9] 159.9

160 —

160 —

120 —

Temperature [C]
Temperature [C]

Increment of temperature on heated boundary Increment of temperature on heated boundary

exact solution

exact solution
10x10 10x10(p=2)
20x20 10310 (p=3)

—— 40x40 ——=— 10x10{p=4)
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Time [s] a) Time [s] b)
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g. 4. Comparison of exact solution to FEM solusiabtained for meshes of lower qualities
(a) and to DGM solutions for coarse 10x10 meshmnd..4 (b)
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Conclusions

Presented results shows that discontinuous Galenkithod applied to higher
orderapproximation allows to obtain accurate resultsewe coarse grids. Appro-
priate combination of spatial adaptation of the m&g&h increasing of polynomial
order of basis functions leads to accurate solstieith efficient memory usage
and computational cost.
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