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Abstract. Presented paper is focused on results of numerical solution of transient heat con-
ductivity equation in two-dimensional region. Convection term is neglected in mathematical 
model of the phenomenon. Solutions based on classical Galerkin  finite element formulation 
obtained for girds of different qualities are compared to discontinuous Galerkin method. 
Spatial discretization of computational domain and order of basis functions are taken into 
account. 

Introduction 

High accuracy of numerical solutions of differential equations is one of the pri-
ority in modern calculation techniques commonly using in engineering practice. 
From among of many advanced numerical methods applied to calculation most 
often finite difference method FDM [1, 2], finite element method FEM [1, 3, 4], 
boundary element method BEM [5], finite volume method FVM [6] are used. In 
the last decade the huge growth interested of discontinuous Galerkin method 
DGM, which can be localized among FEM and FVM, is observed. In 1973, Reed 
and Hill [7] and also independently Lesaint and Raviart [8] described DGM. The 
name of the method concerns to locality of used solution, which can take into con-
sideration discontinuity in scale of particular element. FEM allows to obtain only 
global solution for all nodes in the grid, while DGM permits to get local solution 
for single element. Appropriate introduction of boundary condition on the edges of 
finite elements leads to continuous as well as discontinuous solution. This feature 
of the method enables to use meshes containing “hanging nodes” in calculation 
process. Mesh refinement (h-adaptation) and mesh enrichment (p-adaptation) are 
also easier. In presented paper results for FEM and DGM implemented for tran-
sient heat transfer problem with Newton boundary condition in square testing do-
main are presented and compared. 

1. Formulation of the problem 

Partial differential equation of heat diffusion in two-dimensional domain is 
considered and written in following form 
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where T[K] denotes temperature, t [s] - time, λ [W/mK] - thermal conductivity, 
c[J/kgK] - specific heat, ρ[kg/m3] - density. 

Equation (1) are completed by appropriate boundary condition: 
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where n is a direction of vector normal to the external boundary, α [W/m2K] de-
notes heat transfer coefficient and T∞[K] is ambient temperature. 

Initial condition are defined as follows: 
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where T0 [K] is initial temperature. 
In discontinuous Galerkin method procedure leading to spatial discretization of 

differential equation is similar to analogous procedure employed for finite element 
method. Equation (1) after multiply by weighting function w and integrate over � 
domain is written in weak form: 
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Domain � after spatial discretization procedure is divided into N elements: 
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Solution T is approximated in interior of element using polynomial functions of 
p degree. Basis functions are orthogonal in L2(�j) space [9]. Because of disconti-
nuity in solution appearing on the edges of element numerical flux must be intro-
duced.  Value of the flux depends on solution T(�j), T(�k) obtained for elements 
�j, �k which share Γjk edge and it may be written in following form 

 ( ) ( )( ) ( ) n⋅=ΩΩ TFTTF kjn ,  (6) 

Integral terms occurring in equation (4) may be calculated using one of the 
commonly used method of numerical integration [3, 4]. 
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2. Examples of calculation 

Testing square shaped domain 0.2x0.2 [m], introduced initial, boundary condi-
tions and material properties are presented in Figure 1. 

 

 
Fig. 1. Geometry of the testing domain 

Calculations were performed on structural grids with different quality of spatial 
discretization. DG method was tested on grids presented in Figure 2, on gird  
10x10 calculations were realized for p = 2,3,4, on grid 20x20 for p = 2,3, on grid 
40x40 for p = 2, where p means order of approximation. FEM was tested addition-
ally for grids 80x80 and 160x160, the last solution was treated as a exact solution. 
Calculations in all cases were performed for 100 s with constant time step  
�t = 0.01 s. 

 

   
Fig. 2. Spatial discretization of the testing domain 10x10, 20x20, 40x40 

In DG method accuracy of temperature approximation increases along with po-
lynomial’s interpolation order as well as number of interpolation nodes in the inte-
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rior of finite element (Fig. 3). Relation between interpolation order p and node 
number n describes following formula 

 )2)(1(5.0 ++= ppn  (7) 

    
Fig. 3. Distribution of the interpolation nodes in triangular element for p = 1..4 

Changes of temperature in function of time on the heated wall are presented in 
Figure 4. Accurate results obtained with FEM were gained on 40x40 mesh. DGM 
allows to obtain accurate results on 10x10 mesh with polynomial order p > 2. 

Temperature values on heated boundary for t = 10, 25, 50, 100 s are compiled 
in Table 1. In the last column the most accurate results are presented. 

Table 1. 
Comparison of temperature results obtained for heated boundary 

 
10x10 

 
20x20 

 
40x40 

80x 
80 

160x 
160 

 
T, s 

p = 1 p = 2 p = 3 p = 4 p = 1  p = 2 p = 3 p = 1 p = 2 p = 1  p = 1 
10 54.6 78.4 74.5 74.0 69.5 74.6 74.2 73.4 74.2 74.0 74.2 
25 95.4 105.6 104.6 104.5 104.1 104.6 104.6 104.3 104.5 104.5 104.5 
50 128.9 131.4 131.4 131.4 131.1 131.3 131.4 131.3 131.4 131.3 131.4 
100 160.0 159.8 160.0 160.0 159.9 159.9 160.0 159.9 160.0 159.9 159.9 

 

  a) b) 

Fig. 4. Comparison of exact solution to FEM solutions obtained for meshes of lower qualities 
(a) and to DGM solutions for coarse 10x10 mesh and p = 2..4 (b) 
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Conclusions 

Presented results shows that discontinuous Galerkin method applied to higher 
order approximation allows to obtain accurate results even on coarse grids. Appro-
priate combination of spatial adaptation of the mesh with increasing of polynomial 
order of basis functions leads to accurate solutions with efficient memory usage 
and computational cost. 
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