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Abstract. The time-fractional diffusion-wave equation with the Caputo derivative is con-

sidered. The typical features of the solution to the Cauchy problem for this equation are 

discussed depending on values of the order of fractional derivative. 

Introduction

In recent years an increasing interest has been observed in modeling anomalous 

diffusion processes. Such an interest is connected with describing important physical 

phenomena in amorphous, colloid, glassy and  porous materials, in dielectric and 

semiconductors, comb structures, fractals and  percolation clusters,  polymers, in  

geophysical and geological processes, in biology and medicine.

The model of anomalous transport based on fractional calculus is the subject of a 

considerable literature (see [1-4], among others). In this model the partial derivatives 

with respect to time and space in classical diffusion equation are replaced by deriva-

tives of non-integer order. Essentials of fractional calculus can be found in

[5-7]. The fundamental solution for the time-fractional diffusion-wave equation in 

one space-dimension was obtained by Mainardi [8]. Wyss [9] obtained the solution 

of the Cauchy and signaling problems in terms of H-functions using the Mellin 

transform. Schneider and Wyss [10] converted the diffusion-wave equation with 

appropriate initial conditions into the integrodifferential equation and found the cor-

responding Green functions in terms of Fox functions. Fujita [11] treated integrodif-

ferential equation which interpolates the diffusion equation and the wave equation 

and exhibit properties peculiar to both these equations.

In the present paper, on the bases of numerical analysis, we examined the proper-

ties of the fundamental solution to the Cauchy problem for time-fractional diffusion-

wave equation in one space-dimension. This treatment continuates the study of Mai-

nardi [8]. The distinguishing features of the solution are discussed depending on 

values of the order of fractional derivative including the transition from the diffusion 

equation to the wave equation.
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1. Statement of the problem

Consider the time-fractional diffusion-wave equation
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where ,0 ��� t ,����� x ,20 ��� �� tu �� / is the Caputo partial de-

rivative of the fractional order �:
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where 	 
x
 is the gamma function. The Caputo fractional derivative has the follow-

ing Laplace transform rule
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with s being the transform variable.

The Cauchy problem with the Dirac delta initial condition 

	 
 20,:0 ���� �� xput (4)

is studied. In the case 1 < � � 2 we also adopt the zero initial condition for the time-

derivative of a function
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The initial-value problem (1), (4), (5) was solved by Mainardi using the Laplace 

transform with respect to time. The solution reads
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where 	 
�;zM is the Mainardi function having the series representation
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and being a particular case of the Wright function
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where the Wright function 	 
 ! ,;zW is defined by [12]
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We obtain the solution of the problem considered by another way using the Lap-

lace transform with respect to time t and the exponential Fourier transform with 

respect to the spatial coordinate x. Denoting the transform by the bar and taking into 

account the Laplace transform rule (3), we get

2

1

#�

�

as

s
pu

�
�

�

(10)

We recall that s is the Laplace transform variable, # is the Fourier transform varia-

ble. The inverse transforms result in
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where 	 
zE� is the Mittag-Leffler function [6, 12]
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For � = 1, the Mittag-Leffler function turns into the exponential function, 

	 
 ,1
zezE � and taking into account the following integral
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we obtain the well-known fundamental solution of the diffusion equation
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Fig. 1. Dependence of solution on the similarity variable.

For � = 2, the Mittag-Leffler function of the negative argument turns into the co-

sine function 	 
 ,cos2
2 xxE �� and we obtain the fundamental solution of the wave 

equation
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where the following integral
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has been used.

Typical solutions (11), (14), (15) are shown in Figure 1. The vertical line repre-

sents the Dirac delta function.

2. Analysis of the solution

Fujita [11] treated integrodifferential equation, which is equivalent to the consi-

dered problem for 21 ��� and interpolates the diffusion equation )1( �� and the 
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wave equation (� = 2). Fujita showed that the fundamental solution to this problem 

in the case 21 ��� takes its maximum at 2/
*

�
�tcx &� for each t > 0. Here �c is 

the constant depending on .� Therefore, the points, where the fundamental solution 

takes its maximum, propagate with finite speed. We study the solution (11) using 

classical methods of mathematical analysis.

To find the points ,*x where the fundamental solution (11) in the case 21 ���
takes its maximum, we differentiate (11) with respect to x and put to zero. Thus, 

we obtain
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Next, we differentiate (17) with respect to time:
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Fig. 2. Dependence of the point, where the fundamental solution takes its maximum,              

on the order of fractional derivative
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Fig. 3. Dependence of nondimensional maximum value of solution on the order of fractional 

derivative

Taking into account that 
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and integrating the first integral in (18) by parts, we get
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or after integration
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where �c is a constant of integration.

The speed of propagation of the points, where the fundamental solution takes its 

maximum, is defined as acv /�� � and equals to the value of the similarity vari-

able ,*' where the the solution takes its maximum ).( *'� �v In Figure 1 these 

points are marked by the dark dots. Dependence of '* )or( �v on the order of frac-

tional derivative � is depicted in Figure 2, whereas Figure 3 shows the dependence 

of the maximum value of solution on �.

Now we compare the shape of the curves describing the solution for two different 

times. Introducing the similarity variable as 	 
,/ 2/
0
�tax we present the solutions 
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for t/t0 = 1 (the firm-line curves in Figure 4) and t/t0 = 1.25 (the dashed-line curves 

in Figure 4).

Fig. 4. Dependence of solutions on the similarity variable for different times

Conclusions

The classical theory of diffusion (or heat conduction) predicts that the effects of a 

disturbance will be felt instantaneously at distances infinitely far from its source. 

This limitation of the theory follows from the fact that the classical diffusion equa-

tion is a parabolic-type equation. The hyperbolic-type transport equation allows 

finite wave speed for signals. This phenomenon is known as second sound. The bal-

listic diffusion equation [13, 14] corresponding to � = 2 permits propagation of 

waves at finite speed. Nethertheless, in the case of time-fractional diffusion equation 

with 1 < � < 2 the propagating peaks approximating delta function are also exhi-

bited. The solutions for 1 < � < 2 have peaks propagating with constant speed (a 

feature typical for wave equation), but the strength of these peaks is decreasing with 

time (dissipation typical for diffusion equation). From the analysis presented above 

we can conclude that for 1 < � < 1.4 the solution has the features more closely re-

sembling those of the diffusion equation, for 1.7 < � < 2 the solution resembles the 

solution to the wave equation, the intermediate behavior corresponds to the values

1.4 < � < 1.7.
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