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Abstract. The problem of heat conduction in an annular plate is considered. The plate
is subjected to the activity of the point heat source which moves with constant angular
velocity on the plate surface along a concentric circular trajectory. The solution of the prob-
lem is obtained by using the Green’s function.

Introduction

Several authors have used Green’s functions to solve the heat conduction prob-
lems [1-4]. In paper [1] the steady-state temperature distribution in circular plates
and spheres with discrete internal heat generation sources has been determined.
The temperature distribution was obtained from Green’s function by using the me-
thod of images. A solution of the steady-state heat conduction problem in a solid
cylinder for a variety of boundary conditions by using the Green’s function method
is presented in paper [2]. Influence functions appropriate for the boundary-element
method are constructed with the Green’s functions to describe the temperature
field of a cylinder heated by a specified heat flux over a portion of one face. The
use of modified Green’s function in unsteady heat transfer is considered in paper
[3].

In paper [5] authors study the thermoelastic problem of a thin circular plate.
The plate is subjected to a partially distributed and axisymmetric heat supply on
the curved surface. The authors develop the analysis for the temperature field by
introducing the methods of the finite Fourier and the finite Hankel transform. The
heat conduction problem in a circular thin plate subjected to the activity of a heat
source is presented in paper [6]. The solution of the problem in analytical form is
obtained by using the Green’s function method.

In this paper, an analytical solution to the heat conduction problem in an annular
plate is presented. The plate is heated by a heat source which moves on the plate
surface along a concentric circular trajectory with constant angular velocity. The
temperature distribution of the plate in an analytical form was obtained by using
a time dependent Green’s function.
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1. Problem formulation

Consider temperature in the annular plate of thickness A, inner radius a and
outer radius b (Fig. 1). This plate is heated by a heat source which moves on the
plate surface along a concentric circular trajectory at radius r, with constant angu-
lar velocity .

heat source

Fig. 1. A schematic of an annular plate with a heat source

The heat conduction equation in cylindrical coordinates has the form [4]:
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where: T'(7,9,z,t) - temperature of the plate at point (r,¢,z) at time ¢, k - thermal
conductivity, a - thermal diffusivity and g(r, 9, z,t) represents an energy generation

term.
The heat generation term is assumed in the form

q(r,¢,2,0) =0 5(r —r)) 5(p— (1)) 6(z— h) 2)

where @ characterises the stream of the heat, & ) is the Dirac delta function, ¢(t)
is the function describing the movement of the heat source

P(t) = wt 3)

The temperature distribution in the annular plate is obtained as a solution of the
equation (1) with the following initial and boundary conditions:

T(r,¢,2,0)=0 “4)
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where ¢, is the heat transfer coefficient, 7, is the known temperature of the sur-
rounding medium, 7;, 7, are the known temperatures on boundaries of the plate.

2. Solution of the problem

The solution of the problem in an analytical form is obtained by using the prop
erties of the Green’s function (GF). The GF for the heat conduction problem descri-
bes the temperature distribution induced by the temporary, local energy impulse.
The GF function is a solution to the differential equation [4]:
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Moreover, the Green’s function satisfies the initial and homogeneous boundary
conditions analogous to conditions (4)-(7).

The GF for the considered heat conduction problem may be written in the form
of a series:

Gr9.20) =Y g.(r,z.1)cosm(p—9) ©)

Substituting the series (9) into equation (8) and using the expansion [7]
| e
S(p=9)=-_ 2 cosmlg—9) (10)

the differential equation for the functions g,,(r,z,) is obtained

2 2 2 _ _ _
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Using (9) in boundary and initial conditions, we have

gn(r,z,0)=0, g, =0 g, 0 (12)

r=b
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=0 (13)

z=h
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where 1, =—2.
a

The solution of the initial-boundary problem (11)-(13) can be presented in the
form of a series

gn(r.z.t)=> "1, (r.)w,(z (14)

n=l1

where ¥,(z) are eigenfunctions of the following boundary problem

92
s By, (2)=0 (15)
9z
d
Wy, | =0, [Yeipy, | =0 (16)
dz dz
z=0 z=h
The functions ¥;,(z) are expressed as [7]
w,(z)= B, cos B,z+ tysin B,z, n=1,2,... (17)

These functions are pairwise orthogonal, so that the following condition is satis-
fied

4 0 forn#m
[v. (2w, (2)dz = (18)
0 Q, forn=m
where
h (ﬁ ) 1+ /J’ + U
0, = ey 0 £n 9 sin? B,h (19)
! YU 2uhp
and £, are roots of the equation
20 B, cos B,h— (B2 = 4o* Jsin i, =0 (20)

The Dirac function &z - ¢) in equation (11) may be written in the form

5):2% @1)
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Substituting (14) and (21) into equation (11), we obtain the differential equation

2 2 _ _
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The initial and boundary conditions are given as

Enn (r’o) = 0
rmn r=a =0 Enn r=b =0 (23)
(81_;”” _ILlOanj =0 (armn - /uormnj =0
or . or —

In order to solve the problem (22)-(23), the function /,,,(r,#) can be written in
the form

an(r’t):ZRmnk(r)T;nnk(t)’ aerb (24)
k=1

where functions R, (r) satisfy the Bessel’s equation

or? r or r?

2 2
a Rmnk + ! aRmnk +(y3mk - - JRmnk (r)ZO (25)

where 7, are constants. The functions R, satisfy the following conditions
Ryi(a)=0. R, (b)=0 (26)

The general solution of equation (25) is expressed by well-known Bessel func-
tions in the form

Rmnk (r) = Cl‘]m(}/mnkr)+ C2Ym (}/mnkr) (27)

where J,,, Y,, are the Bessel functions. Using (27) in the boundary conditions (26),
we obtain a system of two homogeneous equations with unknowns C,, C,.

{Cl‘]m (}/mnka)—i_ C2Ym (7mnka): 0 (28)

ClJm (}/mnkb)—i_ CZYm (}/mnkb) = 0

The non-trivial solution of the system (28) exists if ¥,,,, are roots of the following
characteristic equation

‘]m (7/mnka)Ym (;/mnkb)_ ‘]m (7/mnkb)Ym (;/mnka) =0 (29)
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The unknowns C, may be found from the first equation of the system (28) as

C2 —_ (ymnka) Cl (30)
(ymnka)

The functions R,,,, may be assumed in the form

Rmnk (r):Ym(}/mnka)Jm (ymnkr)_Jm(}/mnka)Ym(}/mnkr) (31)

Note that the functions R

mi

. satisfy the orthogonality condition
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by borel o ) is a G-Meijer function [8].

m,n
where G, (x

Substituting the function 7, defined by (24) into (22), multiplying by R,,.i',

then integrating both sides of the obtained equation in the interval (a,b) and using
the orthogonality condition (32), we have

d Tmnk 2 2 K.l//n (;)Rmnk (p)
& Lk y + = -2 n1e Pk P 5y — 34
d ¢ K(ymnk ﬂn )Tm nk 27_[ Qannk ( T) ( )



Temperature distribution in an annular plate with a moving discrete heat generation source 83

The solution of this equation with zero initial condition is as follows

T, () = 2’; Vi (g )f{mnk (0) b2, +82)6-2) )
n A mnk

Finally, the Green’s function on the basis of equations (9), (14), (24) and (35) as-
sumes the following form

G(r.9,2.1,p.0',6,7)=

- i ii%Rmnk(r)Rmnk(p)e_K(}/"z"Ik+ﬁ3)( cosm(g—¢') (36)

where the functions y;, are defined by equation (17), R, are given by equation

(31), Q,, are given by (19), Z,..« are given by (33), 3, are roots of equation (20) and
Vmnk are roots of equation (29).

The temperature distribution 7(r,¢@,z,¢) is expressed by the Green’s function G
as follows

b

t 2z h
T(r.g.z.0)=[dz[dp [d§[g(p.0.c.0G(rp.zt:p. . 6.00dz  (37)
0 0 0 0

After evaluation of the integrals respect to p, @, z and use equation (2) we obtain
the temperature 7'(r,9,z,¢) in the form

T(r,¢,2,0)=6[G(r.¢,2.t:r,9(z}, h,D)d7 (38)
0

Substitution of the Green’s function (36) into equation (38) gives

T(r,9,2.1) = “ZZ LA Ry (N (2P (1,0)  (39)
m 1n=1 k=1 Qn Zmnk

where

P, (1.0) = j cosm(—o(0))exp|—(B2 + 12, )t — )] dx (40)

0

After evaluation of the integral we have
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P..(0)= m [ﬂmnk cos m(o — wt)— mosin m(p — wr)

(4D

—(®,,, cosmod—mmsin md)e " z]

_ )
where &, = K(ﬁ’" + Vink )

Conclusions

In this paper the temperature distribution in an annular plate with point heat
source was considered. It was assumed that the heat source moves on plate surface
along a concentric circular trajectory. The solution of the problem by using the
time-dependent Green’s function in an analytical form has been obtained. Finally,
the three-dimensional temperature field for the plate in a series form was presented.
The obtained solution can be used in the numerical analysis of the field tempera-
ture of the plate as well as for an investigation of the thermally induced vibration
of this plate.
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