
Scientific Research of the Institute of Mathematics and Computer Science, 2(10) 2011, 199-204 

PERCOLATION WITH THICK SYMMETRIC BARRIER  
IN FINITE SYSTEMS 

Karol Pasternak 

Institute of Mathematics, Czestochowa University of Technology, Poland 
karol.pasternak@im.pcz.pl 

Abstract. In this article site percolation is studied on an L×L square lattice with a thick, 
symmetric barrier. Long-range connectivity is the result of the occupancy probability de-
fined on the site. The influence of the thin and thick barrier on the percolation is analysed 
and the algorithm of control of the effectiveness of the scalability is proposed. 

Introduction 

The considered model is called percolation theory. It describes connectivity and 
was proposed by Broadbent and Hammersley [1]. Initially it concerned the flow of 
fluid by partly blocked system channels. The results1 obtained and discussed here 
describe percolation on a finite lattice with a thin or thick barrier and are  
the continuation of the study presented in [2]. 

 

 
Fig. 1. Square grid  L×L  with  hatched area denoting  barrier of size W×D. Black squares 

are occupied sites. Path from left to right side is spanning cluster created by randomly 
chosen sites 

                                                      
1 Calculations were carried out in Wroclaw Centre for Networking and Supercomputing 
(http://www.wcss.wroc.pl), grant No. 151. 
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A grid with sites occupied with  probability p is considered (Fig. 1). If p is 
small, we can see not many occupied sites with a few small groups of them. For 
larger values of p (when p = 1 every site is occupied), there are more groups of 
occupied sites. When the value of p is large enough, they can form a spanning clus-
ter (it is a path between the left and right side of a grid). We describe long-range 
connectivity (L tends to infinity) by the probability of the appearance of spanning 
cluster P as a function of p. 

 

 
Fig. 2. Probability of appearance of  spanning cluster P as function of occupancy proba-

bility p for grid size L without barrier and with thin barrier 

 

Fig. 3. Probability of appearance of spanning cluster P as function of occupancy proba-
bility p for grid size L and with thicker barrier 
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In Figure 2, we present the results for two cases - without and with a thin barrier 
(given as a symmetric set of sites with p = 0). As we can see for the smaller  barri-
er, the spanning cluster forms faster. Figure 3 shows the percolation on grids with 
a thicker barrier. In the plots, we show the probability of spanning cluster P as  
a function of occupancy probability p for grid size L for three cascades with ratio 
W*D/L2 equal to 0.036, 0.07 and 0.11 respectively. 

 

 

Fig. 4. Scalability of function P(p) for grid size L without barrier and with thin barrier 

 

Fig. 5. Scalability of function P(p) for grid size L with thick barrier  

In this study we also consider the behaviour of critical exponent ν by testing the 
probability of spanning cluster P as a function of a new variable, (p − pc)*L1/ν.  
The percolation threshold (pc) is a value of p for which the spanning cluster occurs 
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for a grid with L tending to ∞. For the two-dimensional square lattice, the percola-
percolation threshold is known: pc = 0.59274621 [3]. In Figures 4 and 5 we adopted  
1/ν  = 0.75. Analyzing the scalability in the case without a barrier for two different 
L sizes, we observe that it agrees with the results known from the literature [4]. In 
the case when a barrier appears, the scalability with the standard critical exponent 
1/ν  = 0.75 is not so effective.  

To improve the scalability for models on a finite grid with a barrier, it is 
necessary to choose the better critical exponent and to construct an algorithm 
which allows us to evaluate its effectiveness in scaling the plots. 

1. Control algorithm 

To improve the scalability for models with barriers and to find the best critical 
exponent, a special method called a control algorithm is proposed. Its construction 
is shown in Figure 6. To check the quality of a given ν, we need to estimate the 
distance between two plots given by  two series of data. The first, understood as the 
base plot, is in our case the plot for a grid with L = 101 and the second plot is the 
plot for L = 303. We estimate the distance of two such plots from the same cascade 
determined by the constant value of ratio W*D/L2. On the first plot we fix the 
points given by the data; the corresponding points connected to the second plot are 

understood as points determined using the linear interpolation between the points 
of the second plot according to Figure 6. Next, for the same arguments of both 
series of data, the distances between the corresponding points on the base plot and 
those determined by the interpolation are calculated. The maximal value of such 
distances is defined as δ. We apply this characteristic to control the effectiveness of 
scaling the plots of probability of spanning cluster P as a function of occupancy p 
with given critical exponent ν.  

 

 
Fig. 6. Construction of control algorithm 
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In Figures 7 and 8 the scalability of function P(p) for grid size L with barrier 
size W*D and the best critical exponent is shown. Using the described control algo-
rithm we obtain better scalability than in the case with 1/ν = 0.75 for a grid with 
barriers. 

 

 

Fig. 7. Scalability of function P(p) for grid size L with thin barrier and with best critical 
exponent 

In Table 1, we present the best critical exponent ν for every cascade (deter-
mined by constant ratio PP/PL = W*D/L2) and δ - calculated using the control algo-
rithm.   

 

 
Fig. 8. Scalability of function P(p) for grid size L with thick barrier and with best critical  

exponent 



K. Pasternak 204

Table 1 

Value of best critical exponent for all cascades and respective δ 

PP/PL = W*D/L2 1/ν δ 

0 0.75 0.00493  

0.012 0.70 0.01101 

0.024 0.71 0.00911 

0.036 0.69 0.00929 

0.036 0.72 0.00911 

0.07 0.71 0.00865 

0.11 0.67 0.01279 

2. Final remarks 

In this study we discussed the influence of the size of the symmetric barrier on  
the formation of a spanning cluster. The obtained results, scaled according to the 
standard approach, indicate that plots can be divided into subsets called here cas-
cades and determined by ratio W*D/L2. In scaling the plots, we first applied the 
value of critical exponent known for grids without a barrier. The presented plots 
show that its effectiveness diminishes when the size of the barrier increases. We 
proposed to use different values of this exponent for the respective cascades. The 
constructed control algorithm allows us to estimate the effectiveness of the pro-
posed scaling. Further investigations shall be devoted to the improvement of scala-
bility, its evaluation and to develop a method to calculate effective critical expo-
nents. 
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