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Abstract. The convection-diffusion equation (1D problem) is considered. At first, the un-

known temperature T is expanded into a Taylor series with respect to time taking into  

account its three components. Next, using the convection-diffusion equation and equation 

obtained from the differentiation of this equation, the way of temperature T
 
computations is 

shown. In this new equation the high order derivatives with respect to spatial co-ordinate 

appear and the approximation of these derivatives is also discussed. The explicit scheme is 

used and the stability criteria are formulated. Finally, the results of computations are shown. 

Introduction 

The following convection-diffusion equation is considered [1-4] 
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where c is the specific heat, ρ is the mass density,  λ  is  the  thermal  conductivity, 

ε denotes the porosity (the ratio of liquid volume to the total volume), u is the  

velocity, T denotes the temperature, t is a time, Q(x, t) is the capacity of internal 

heat sources. All thermophysical parameters in equation (1) are assumed to be 

known and constant. The equation (1) can be written in the form 
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where a = λ / (cρ) is the diffusion coefficient. 

      The difficulties connected with the proper solution of convection-diffusion 

equation (2) appear when the second term on the right-hand side (convection) is 

dominated [5].  
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Using the explicit scheme of the finite difference method [6-10] the following 

approximation of equation (2) for the internal node i can be proposed 

 
1 1 1 1 1 1 1

1 1 1 1

2

2
ε

2 ρ

f f f f f f f f
i i i i i i i iT T T T T T T Q

a u
t h ch

− − − − − − −

− + + −
− − + −

= − +
∆

 (3) 

where ∆t = t
 f
 – t

 f−1
 is the time step and h is the mesh step, respectively. 

From equation (3) results that 
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The criteria of stability are the following 
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In the paper the other algorithm based on the FDM is proposed. At first, the 

function T is expanded into a Taylor series with respect to time taking into account 

its three components. Next, using the equation (2) and equation obtained from the 

differentiation of this equation with respect to time, the method of temperature 

T
 f
 computations is shown. In this new equation the high order derivatives with 

respect to x appear and the approximation of these derivatives is also discussed. 

1. Convection-diffusion equation - discretization with respect to time 

Function T is expanded into a Taylor series taking into account its three com-

ponents [5] 
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From equation (6) one has 
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Equation (2) is differentiated with respect to time 
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The equations (2), (8) can be written for time t
 f−1
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and 
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Introducing (9) and (10) into (7) one has 
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Taking into account the dependence (9) one obtains 
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or 

 

1 2 4 1 3 1 2 1

4 3 2

2 2 2 1 1 2

2 2

ε
2

ε ε
ε

2 2 ρ 2 ρ 2 ρ ρ

f f f f f

f f

T T a t T T T
a u t a

t x x x

u t T T a t Q u t Q t Q Q
u

x c c x c t cx x

− − − −

− −

− ∆ ∂ ∂ ∂
= − ∆ + +

∆ ∂ ∂ ∂

∆ ∂ ∂ ∆ ∂ ∆ ∂ ∆ ∂
+ − + − + +

∂ ∂ ∂∂ ∂

 (13) 

From equation (13) results that 
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2. Approximation of high order derivatives 

The next step of the algorithm presented consists in the approximation of deriv-

atives appearing on the right-hand side of equation (14). Let us assume that  

i = 0, 1,…, n, where i = 0 and i = n correspond to the boundary nodes, while 

i = 1, 2, …, n – 1 are the internal nodes. For the nodes i = 2, 3, …, n – 2 the follow-

ing approximations are used [2] 
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Introducing the dependences (15)-(18) into equation (14) one has 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2 22 4

1

4

2 2 2 2

1 1

2 24 4

2 2 22 3

1

14

2 2 22 3

1

14

2

1 1

12

3 2 ε

ε ε

2 2

4 2 ε 2 ε ε

2

4 2 ε 2 ε +ε

2

2
2

f f
i i

f f
i i

f
i

f
i

f f
i i i

a t ah t uh t h
T T

h

a t a uh t a t a uh t
T T

h h

a t a uh t ah t uh t uh t
T

h

a t a uh t ah t uh t uh t
T

h

a t
Q Q Q

h cρ

−

− −

+ −

−

+

−

+

− −

+

∆ − ∆ − ∆ +
=

∆ − ∆ ∆ + ∆
+ +

− ∆ + ∆ + ∆ + ∆ − ∆
+

− ∆ − ∆ + ∆ + ∆ ∆
+

∆
+ − +( )

( )
( )

( )

2

1 1 1

1 1 1

1

ε

4 ρ

2 ρ

f f f
i i

f f
i i

u t
Q Q

hc

t
Q Q

c

− − −

− + −

−

∆
− −

∆
+ +

 (19) 

For stability conditions, the coefficients on the right-hand side terms must be posi-

tive, this means 
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From this system of inequalities results that 
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So, according to the conditions (21), at first the mesh step h should be determined 

and next the proper time step ∆t  should be assumed. 

It should be pointed out that for the node i = 1 the following approximations are 

applied 
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while for the node i = n – 1: 
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The way of boundary conditions approximation is the same as in the classical fi-

nite difference method [6, 7]. 

3. Results of computations 

The layer of thickness L = 0.05 m is considered. The following input data are 

introduced: thermal conductivity λ = 0.5 W/(mK), specific heat c = 4000 J/(kgK), 

density ρ = 1000 kg/m
3
. For x = 0 and x = L the zero heat fluxes are assumed. The  

initial temperature is equal to 30°C. The source function is of the form 
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Mesh step is equal to h = 0.0001 m, time step: ∆t = 0.01 s.  

     In Figures 1-6 the temperature distributions in the domain considered for cho-

sen moments of times and different values of velocity u and porosity ε are shown. 

In Figures 7 and 8 the temperature history at the central node for different val-

ues of porosity under the assumption that u = 0.01 m/s  (Fig. 7) and u = 0.03 m/s is 

shown. 

 

Fig. 1. Temperature distribution after 15, 25, 35 and 45 seconds (u = 0.01 m/s, ε = 0.001) 
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Fig. 2. Temperature distribution after 15, 25, 35 and 45 seconds (u = 0.03 m/s, ε = 0.001) 

 

Fig. 3. Temperature distribution after 15, 25, 35 and 45 seconds (u = 0.01 m/s, ε = 0.005) 

 

Fig. 4. Temperature distribution after 15, 25, 35 and 45 seconds (u = 0.03 m/s, ε = 0.005) 
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Fig. 5. Temperature distribution after 15, 25, 35 and 45 seconds (u = 0.01 m/s, ε = 0.01) 

 

Fig. 6. Temperature distribution after 15, 25, 35 and 45 seconds (u = 0.03 m/s, ε = 0.01) 

 

Fig. 7. Temperature history at the central node (u = 0.01 m/s) 
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Fig. 8. Temperature history at the central node (u = 0.03 m/s) 

Figure 9 illustrates the temperature distribution after 25 seconds for different ve-

locities under the assumption that porosity is equal to ε = 0.01. 

 

Fig. 9. Temperature distribution after 25 s (ε = 0.01) 

In the case of small porosity the changes of temperature due to the change of 

velocity are rather imperceptible (compare Figures 1 and 2). The similar situation 

takes place for different porosities and small velocity (compare Figures 2, 3 and 5). 

When porosity ε is greater than 0.001 and velocity is equal to u = 0.03 m/s the 

maximum temperatures are moved for next moments of times (compare Figures 4, 

6 and 9). Observing the temperature history at the central node of the domain con-

sidered (Figures 7 and 8) it is visible that in time of  heating (10 seconds) the tem-

perature profiles are independent on porosity and velocity, after this time the tem-

perature is changed importantly. 

It should be pointed out that for small values of velocity and porosity the results 

of computations have been compared with the results obtained using the classical 
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finite difference method presented in Introduction and the temperatures obtained 

were practically the same. 

Conclusions 

The algorithm based on the finite difference method for numerical solution of 

the 1D convection-diffusion equation has been proposed. The explicit scheme of 

FDM has been considered and stability criteria have been formulated. The exam-

ples of computations for different values of porosity and velocity have been pre-

sented. The drawback of the presented method is the necessity of high-order deriv-

atives approximation. 
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