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Abstract. In this paper, the free vibration of an annular membrane consisting of three con-

centric segments is considered. The frequency equation and mode shapes are obtained by 

the use of the Green’s function method. A numerical example to vibration problem of  non-

homogeneous annular membrane is presented. 

Introduction 

The problem of transverse vibrations of composite annular membranes has been 

considered by several authors [1-4]. In the papers [1, 2] the free vibration of com-

posite membranes consisting of two annular segments is investigated. The exact 

solution of the problem and vibration analysis of membranes with discontinuously 

varying thickness is presented. In reference [2] the finite element method in the 

analysis was also used. The free vibration problem of annular membrane with 

many discontinuous variation of the density is the subject of paper [3]. Although 

the formulation of the problem deals with the vibration of membrane which consist 

of m segments (each of constant density), the numerical examples concern the 

antisymmetric modes of composite membrane consisting of two segments. In this 

case the frequency equation is obtained by setting the determinant of a 4x4 matrix 

of coefficients to a derived system of equation, which equals zero. In many papers 

various methods are applied to solution of the eigenvalue problems. The authors of 

paper [4] in solving the eigenproblem for annular membrane propose the method 

of fundamental solution. In this method the free space Green’s function are ap-

plied. 

In this paper the free vibration problem of a composite annular membrane con-

sisting of three segments of constant densities is presented. The solution of the 

problem (frequency equation, mode shapes) is derived by using the properties of 

Green’s functions corresponding to the Helmholtz operator in an annular domain. 

An example of numerical frequency analysis is given. 
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1. Formulation and solution of the problem 

The free vibration of a membrane consisting of three annular segments (Fig. 1) 

is governed by the following differential equations: 
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where ui is the displacement of the i-th membrane segment, /
i i
k sρ= ɶ , sɶ  is the 

tension per unit length, 
i
ρ  is the density of i-th segment of the membrane, δ(⋅) is 

the Dirac delta function, 
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are polar coordinates and t is time. The densities of the membrane change step-

wise at circles with radii 
1
r  and 

2
r . These circles determine the uniform segments 

of the membrane.  

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 1. A sketch of a membrane under study 

The functions ui (i = 1,2,3) satisfy the continuity conditions: 
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and the zero boundary conditions 

 ( ) ( )1 0 3 3
, , 0, , , 0u r t u r tθ θ= =   (3) 

Considering the free vibration of the membrane we assume the functions 

( ), ,

i
u r tθ  and ( )i

s t  in the form: 

r0 
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r2 
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 ( ) ( ) ( ), , cos cos , cos
i in i i
u r t U r n t s t S tθ θ ω ω= =   (4) 

where ω  is the natural frequency of the membrane. Taken into account equations 

(4) differential equation (1), continuity and boundary conditions (2)-(3), we obtain: 
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The solution of the problem (5)-(8) can be obtained by the use of the Green’s 

function method. The Green’s functions corresponding to the operator Lin satisfy 

non-homogeneous differential equation 
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and the homogeneous boundary conditions: 
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Multiplying the equation (5) by ( ),

i
rG r ζ  and integrating in interval 

1
,

i i
r r
−

 

for i = 1,2,3, we obtain 
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Next, we use the self-adjointness of the operator Lin , i.e.: 
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for all functions u, v which satisfy the same zero conditions (10) as the functions 

Gi. Taking into account (12) in equation (11) we can write 
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where we have used the property of Dirac delta function 
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Using (13) in conditions (6) we obtain a system of equations:  
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These equations have a non-trivial solution for the values of parameter ω  which 

are roots of  the frequency equation 
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Equation (16) is then solved numerically with respect to the non-dimensional fre-

quency 3

3n n
r

s

ρ
ωΩ = .  

The mode shapes of vibration corresponding to the determined frequencies we 

obtain from equation (13) 
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where 
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( ) ( )

( )
1 1 1 2 1 1

2 1

2 1 2

, ,

,

n n

n n

n

G r r G r r
S S

G r r

+

=   (18) 



Frequency analysis of composite annular membranes 

 

133

2. Numerical examples 

Consider a non-homogeneous annular membrane whose density changes step-

wise in a radial direction. The membrane is characterized by radii: r0 = 0.2, 

r1 = 0.4, r2 = 0.6, r3 = 0.8, and by ratios of densities of the segments: 
1

1

3

ρ
σ

ρ
=  and 

2

2

3

ρ
σ

ρ
= . The eigenfrequencies of the membrane we calculate numerically by us-

ing the frequency equation (16). The bisection method was applied. The non-

dimensional frequencies corresponding to symmetric modes of vibrations for vari-

ous values of ratios 
1
σ  and 

2
σ  are presented in Table 1. The comparison of the 

results presented in the table leads to the conclusion that increase of the densities 

ratios causes decrease of the frequencies of the membrane. 

Table 1 

First five frequency values 3

0 0 3i i
r

s

ρ
ωΩ = , for nonhomogeneous membrane shown in Figure 1 

for various values of σ
1
 and σ

2
 

1
σ

 

01
Ω

 02
Ω

 03
Ω

 04
Ω

 05
Ω

 

2
0.1σ =

 

0.1 7.22575 19.09385 31.38584 43.66073 55.38157 

1.0 6.12412 9.09007 18.70560 20.28878 32.31386 

5.0 1.43392 3.82080 6.26935 7.97735 8.94993 

10.0 0.71866 1.91728 3.15893 4.40742 5.65656 

 
2

1.0σ =
 

0.1 4.48688 10.11479 16.13784 22.28729 28.48738 

1.0 4.09769 8.32377 12.52867 16.72628 20.92059 

5.0 1.40561 3.70511 5.74119 6.78442 8.83797 

10.0 0.71516 1.90563 3.13651 4.36547 5.54419 

 
2

5.0σ =
 

0.1 1.01913 2.89382 5.18590 7.56466 9.91070 

1.0 1.01416 2.86149 5.11402 7.43692 9.68276 

5.0 0.89200 2.01103 3.20914 4.43146 5.66214 

10.0 0.62994 1.43690 2.08907 3.04102 3.82215 

 
2

10.0σ =
 

0.1 0.51144 1.45959 2.62192 3.83689 5.06853 

1.0 0.51081 1.45556 2.61350 3.82366 5.04984 

5.0 0.49536 1.33866 2.20651 2.87151 3.78985 

10.0 0.44705 1.00976 1.61248 2.22774 2.84796 
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(a) (b) 

 
 

(c) (d) 

  

(e) (f) 

Fig. 2. Mode shapes for an annular membrane: a) 
01

1.01416Ω = , b) 
02

2.86149Ω = ,  

c) 
11

1.09474Ω = , d) 
12

2.90734Ω = , e) 
21

1.29468Ω = , f) 
22

3.03193Ω =  

Mode shapes of the annular membrane shown in Figure 1 for r0 = 0.2, r1 = 0.4, 

r2 = 0.6, r3 = 0.8, and 1
1.0σ = ; 

2
5.0σ =  are presented in Figure 2. The surfaces are 

plotted on the basis of formulas (17) and (18). The first two surfaces (Fig. 2a, b) 

obtained for n = 0, represent the axisymmetric modes of vibration and the re-

mained for n = 1 and n = 2, present the antisymmetric modes of vibrations. 

Conclusions 

In this paper the solution to the problem of free vibration of an annular mem-

brane consisting of three concentric segments, each of constant density is present-
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ed. The frequency equation and mode shapes are expressed by Green’s functions 

corresponding to relevant Helmholtz problems. Numerical results presented in the 

table show the effect of change the densities of the membrane segments on the 

eigenfrequencies of the system: increase of the ratios of densities causes a decrease 

of the free vibration frequencies. The presented here the method to solution of the 

free vibration problem of a membrane consisting of the three segments can be gen-

eralized on the annular membrane consisting of an arbitrary number of concentric 

segments. 
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