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Abstract. The paper presents the possibilities of numerical solution of the non-linear 

boundary-initial problem described by the Fourier equation. In particular, the equation con-

taining the temperature-dependent thermophysical parameters (volumetric specific heat and 

thermal conductivity) is considered. The problem presented in this paper is connected with 

the artificial linearization of the task discussed (at the stage of numerical computations), in 

other words, the new numerical procedure which allows one to remodel the solution ob-

tained for linear problem at the time level t t+ ∆  to the other solution corresponding to non-

linear one. The procedure discussed can be a very effective supplement for different vari-

ants of the boundary element method which, as a rule, requires a linear form of the energy 

equation. In the final part the examples of numerical simulations and the conclusions can be 

found. 

Introduction 

The following energy equation is considered: 
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where: λ(T) is the thermal conductivity, c(T) is the volumetric specific heat,  

T = T(x, t), x, t denote temperature, spatial co-ordinates and time, respectively. The 

equation (1) is supplemented by the boundary conditions in a general form 
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where /T n∂ ∂  denotes the normal derivative. The initial condition 
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is also given 
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Let us assume that we know the temporary solution (corresponding to time t t+ ∆ ) 

of the linear problem  
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where λB and cB are the certain constant ‘basic’ parameters. The boundary and ini-

tial conditions of  the both problems are the same. The question for which we will 

try to find the answer is how to remodel the solution of problem (4) to the solution 

of problem (1).  

At present in the literature one can find the several procedures which allow one to 

transform the temporary solution of linear problem (for transition from time t to 

time t t+ ∆ ) to the solution corresponding to the non-linear one. In this place one 

should specify: 

– the artificial heat source method presented by Majchrzak and Mochnacki 

among others in [1, 4, 5], 

– the alternating phase truncation method [6] generalized by Mochnacki and 

Kapusta (e.g. [7, 8]), 

– the temporary temperature field correction method (proposed by Hong, Umeda 

and Kimura) and next developed by Majchrzak, Mochnacki [3, 4] and  

Szopa [9], 

– the generalization of temporary temperature field correction method presented 

in this paper.  

1. Temporary temperature field correction method   

The numerical procedure being the ‘prototype’ of TFCM appeared in the scien-

tific environment of people working in the scope of thermal theory of foundry 

processes many years ago (temperature recovery method [1]). The approximate 

solution of the well known Stefan problem (e.g. solidification of pure metals) has 

been obtained on the basis of a solution concerning the cooling process in homo-

geneous domain, but when the local temperature decreases below the solidification 

point T*, then at the node considered the value of T* should be assumed, while the 

latent heat L, this means A2-A1, should be decreased about change of local enthalpy 

resulting from the cooling process proceeding at this point during  time interval 

t∆  (Fig. 1). 

In 1984 Hong, Umeda and Kimura [2] proposed to apply the similar algorithm 

for the case of alloys solidification  (the course of enthalpy for such material is 

shown in Figure 2, at the same time the values of successive volumetric specific 

heats are assumed to be constant). 

The computations are realized for a conventionally homogeneous domain  

(e.g. molten metal). When the local temperature decreases below the value corre-
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sponding to the beginning of solidification process then the nodal temperature 

obtained is corrected on the basis of energy balance resulting from the change of 

local enthalpy. The concept of temperature field correction is shown in Figure 2.  

In this place it should be pointed out that the creators of procedure discussed have 

not noticed that the  proposed approach is correct only under the assumption of 

constant value of thermal conductivity in whole domain Ω (see: [3, 4, 9]).  

 

 

Fig.1. Temperature recovery method 

    

Fig. 2. Procedure proposed by Hong, Umeda and Kimura 

The generalized version of TFCM will be presented sufficiently in detail, be-

cause the ‘better’ version of the method which will be presented in the next chapter 

basis on similar assumptions and formulas.  

Let us assume the thermal conductivity of domain Ω is a constant value, while 

the volumetric specific heat is approximated by the piecewise constant function. In 

other words, the following energy equation is considered: 
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The essence of the method consists in the correction of the local temperature 

values found for transition t
 f−1 
→ t

 f
 [1, 3, 4].  

The interval [T
∞

, T0] (ambient temperature, initial temperature) is divided into 

sub-intervals for which one assumes the constant value of thermal capacity C(T), 

this means C(T) = cm, for Bm<T<Bm+1 (Figure 3). The computations are realized 

assuming that the entire domain considered corresponds conventionally to the 

basic phase (e.g. the ‘hottest’ phase) with parameter c0. In this way the problem 

becomes the linear one. Next, the temperatures obtained for transition t
 f−1

 → t
 f
 in 

a homogenous area are corrected in a special way ( the procedure corresponding to 

the cooling process is discussed below, the procedure concerning the heating pro-

cess is very similar). 

Let us assume that the temperature at the point x
 l
 corresponds to phase m -  

Figure 3. We denote 
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where: Bm, Bm+1, Bm+2,...,BM+1 are the border temperatures limiting the successive 

'phases'. From the physical point of view the values ∆ are the changes of unitary 

enthalpy [J/m
3 
] corresponding to the changes of temperature shown in Figure 2. 

 

 

Fig. 3. The phases distinguished in the interval [T ∞, T0] 
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The procedure of temporary temperature correction method at the considered 

point x
 l
 is the following: 

If 
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then the corrected value of Tl
f
 results from the formula 
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one obtains the following enthalpy balance 
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Fig. 4. Differences between Ti
f-1 and border temperatures 

If 
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then 
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The analogous formulas can be derived for the next transitions, but taking into 

account the exactness of the numerical solution, the big changes of temperatures 

are rather not accepted.  

2. Generalization of TFCM 

If one assumes that the thermal conductivity of material can be approximated in 

the form of piecewise constant function (similarly as volumetric specific heat - 

Figure 3), this means 
1

λ( ) λ ,
m m m

T B T B
+

= < < , then the procedure presented in 

the previous chapter can be generalized in case of temperature-dependent λ . The 

computations are realized assuming that the entire domain considered corresponds 

conventionally to the basic phase (e.g. the ‘hottest’ phase) with parameters 
0 0
, λc . 

So, the following energy equation is considered 
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The similar equation for m ‘phase’  
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can be rewritten as follows 
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In this way we ‘return’ to the problem described in the previous chapter. The 

volumetric specific heats corresponding to the successive ‘phases’ must be rede-

fined in the proper way, of course. In a case of practical problems the Neumann 

condition is given in the form of boundary heat flux and then this condition should 
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be rebuilt in a simple way. The same situation takes place when the Robin bounda-

ry condition is considered.   

3. Examples of computations 

The first example concerns the cooling of plate (1D problem, L = 0.05 m). The 

input data for the basic problem are equal to 
0

λ = 1 W/mK, 
0
c = 10

6 
J/m

3
K while the 

rearranged solution corresponds to λ
m

= 0.5 and 
6

2 10
m
c = × . 

 

 

Fig. 5. Solution of the basic problem (Dirichlet conditions) 

Additionally, the Dirichlet conditions are taken into account and the boundary 

temperatures are equal to 100 and 500°C. Initial temperature equals 500°C. The 

basic problem has been solved using the first scheme of the BEM for parabolic 

equations [3, 4] and the temperature profiles for times 1, 2, 3, 4 and 5 minutes are 

shown in Figure 5.  

Next, using the procedure described in the previous chapter, the solution  

obtained has been transformed in order to take into account the other values of 

thermophysical parameters. This solution is shown in Figure 6. 

To check the effectiveness of procedure proposed the same problem has been 

solved directly for λ
m

= 0.5 and 
6

2 10
m
c = × , the results are shown in Figure 7.  

One can see that the temperature profiles are practically the same. 

The second example has been solved under the assumption that the boundary 

conditions correspond to the Neumann ones. In particular, the boundary heat fluxes 

are equal to 0 and 10 000 W/m
 2
. The results of computations are shown in Figures 8, 

9, 10 and both the direct solution for new input data and the rearranged one are 

very close. 
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Fig. 6. Solution for new parameters 

    

Fig. 7. The direct solution for new input data 

    

Fig. 8. The basic solution 
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Fig. 9. The rearranged and direct solutions 

The next example concerns the simulation of continuous casting technology 

(production of rectangular steel cast strands using the vertical plant). In particular, 

the thermal processes proceeding in the primary cooling zone are analyzed. The 

mathematical model of solidification is based on the method called ‘a one domain 

approach’ [10, 11] and then the evolution of latent heat is taken into account by the 

introduction of  substitute thermal capacity [12, 13]. This parameter can be assumed 

in the form of piecewise constant function. The same assumption can be accepted as 

an approximation of steel thermal conductivity. The energy equation describing the 

process is transformed to the form of the typical Fourier equation by the introduction 

of a moving co-ordinate system (wandering cross section method [14]). Let us 

assume that TS  = 1470°C and TL = 1505°C are the border temperatures 

corresponding to the transitions solid state - mushy zone - molten metal. Then  

the substitute thermal capacity of carbon steel (0.44% C) is given as  

cS = 4.875 MJ/m
3
K (solid), cM = 62.09 MJ/m

3
K (mushy zone), cL = 5.904 MJ/m

3
K 

(molten  metal), while λ
S

= 35 W/mK, λ
M

= 27.5 W/mK, λ
L

= 20 W/mK. Pouring 

temperature Tp  = 1550°C. The dimensions of cast strand section are equal to 

1 0.2× m. Pulling rate w = 0.02 m/s (this information is necessary at the stage of 

energy equation formulation), boundary heat flux given on the  lateral surface of 

cast strand
5 2

2 10 W/mq = × , the length of primary cooling zone L = 0.8 m. The 

computations have been realized for the molten metal parameters (’basic phase’). 

The problem (the wandering cross section method allows one to determine the 

temperature field in traverse sections of casting for different values of vertical co-

ordinate) has been solved using the first scheme of boundary element method for 

2D parabolic equations. In Figure 10 the cooling curves at the points located along 

the symmetry axis of a longer flank of the section are presented. The successive 

curves correspond to the x = 0.06, 0.07, 0.08, 0.09, 0.1 m (external boundary).  
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Fig. 10. Cooling curves 

The solution obtained was compared with the solution found using the ‘house 

in’ FDM program simulating the non-linear and transient heat conduction process. 

The conformity of both solutions is quite satisfactory.  

Conclusions 

The different methods of artificial ‘linearization’ of boundary-initial problems 

connected with the heat conduction give the possibilities to transform (at the stage 

of numerical modeling) the task considered to the linear one whose approximate 

solution is essentially simpler. The most important applications of procedures pre-

sented appear in the case of boundary element method  employment, but such an 

approach can be also used as the additional procedure complementary to the others 

methods of heat transfer modeling. 
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