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Abstract. The hypercomplex fractals obtained from generalizations of J- and M-sets, apart 

from their visual aesthetics, play an important role in the mathematical description in vari-

ous fields of physics. The generalizations of J- and M-sets to the four-dimensional Euclid-

ean space are well known and well described. However, very few studies were done for the 

higher-dimensional generalizations. The paper discusses the J-sets generalization to the 

hypercomplex algebra of bioctonions and completes the previous studies in this domain. 

The symmetry properties were studied for quadratic mapping of the bioctonionic J-sets. The 

discussion of limitations of the further generalizations of J-sets to higher hypercomplex 

spaces was also provided. 
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Introduction 

The classical Julia and Fatou sets and their generalization, Mandelbrot set, have 

been investigated in various domains: self-similarity, periodicity and many others. 

The simple recursive equation 

 czz kk +=
+

2

1
, (1) 

where c is the control parameter, which completely defines the shapes and topolo-

gies of resulting J-sets (both parameters are complex, namely C∈cz, ), could gen-

erate the structures of infinitely high complexity. The generalization of the J- and 

M-sets to higher spatial dimensions is of interest to many scientists and enthusiasts. 

To date some generalizations are known: Pickover [1] and Norton [2] proposed the 

J-sets constructed using quaternions, the hypercomplex vectors presented in 4D 

Euclidean space, while Griffin and Joshi [3, 4] constructed J-sets using octonions, 

the hypercomplex vectors presented in 8D Euclidean space. In the latter cases the 

parameters of (1) are quaternions ( H∈cz, ) and octonions ( O∈cz, ), respectively. 

Further generalizations could be done using higher-dimensional Cayley-Dickson 

algebras, however every extension of C  results in loss of the algebraic properties 

of a given algebra, which will be discussed later. 
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With the increase of the dimension of a vector space, the complexity of J repre-

sentations increases significantly. Therefore it is necessary to investigate their 

symmetry properties in order to simplify the operations on them. The scientific 

group from the Belarussian Academy of Science studied the symmetry of J-sets 

based on quaternions, biquaternions [5] and octonions [6] and proved that due to 

the symmetry of these hypercomplex J-sets they could be defined by two numbers: 

the real part of the (bi)quaternionic/octonionic control parameter 0
C  and the 

modulus of this parameter C . 

Hypercomplex numbers, including J-sets, have various applications in physics 

theories, primarily in relativistic mechanics and kinematics. Quaternions were used 

in mechanics since they were introduced by Hamilton in 1843 [7]. The intensive 

application of the quaternions and octonions and their derivatives could be observed 

in electrodynamics, cosmology, quantum mechanics and special relativity [8-12]. 

Moreover, the investigation of hypercomplex fractal sets may be helpful in the 

defining of dynamic systems. The bioctonions seem to be a tool which could be 

used in the black holes and supergravity theories [13]. 

This paper deals with the special case of hypercomplex algebra - bioctonions. 

In the presented study the symmetry properties of J-sets constructed in such vector 

space were investigated based on a quadratic mapping in the form of (1). Moreover, 

the higher-dimensional and derivative to octonionic algebras were analyzed from 

the point of view of possibilities of construction of further variations of J-set. 

1. Hypercomplex algebras 

The simplest generalization of complex algebra C  is the quaternionic algebra 

H . The quaternion z  is a set of four real numbers (basis elements) 3210
,,, xxxx  

with one real 0e  and three unreal units 
321

,, eee , 1
0

2

3

2

2

2

1
−=−=== eeee  [14]. 

The commutation is described by the following form: 

 
33221100
xexexexez +++= . (2) 

The quaternions are not commutative with respect to multiplication: 
1221
zzzz ⋅≠⋅ , 

H∈
21

, zz , however it holds the multiplication associativity: ( ) ( )
321321
zzzzzz ⋅⋅=⋅⋅ . 

In terms of further studies it is suitable to represent (2) in the form of combination 

of a scalar and a vector of imaginary elements: 

 x+=
0
xz . (3) 

Thus, the conjugation of a quaternion could be presented as follows: 

 ( ) x−==
0

conj xzz , (4) 



On the symmetry of bioctonionic Julia sets 25

then 

 
2

zzzzz ==  (5) 

is a scalar and forms the modulus of z : 

 ∑
=

=

n

i

i
xz

1

2 . (6) 

The next generalization of C  is the octonionic algebra O . The octonion  

z  could be presented in the same form as in the case of quaternions (see (2)) [14]: 

 
7766554433221100
xexexexexexexexez +++++++= , (7) 

where only the first element in (7) is real, thus the octonions hold the notation 

assumed in (3)-(6). The octonions do not hold commutativity nor associativity 

algebraic properties, however satisfy the weaker form of associativity - the alterna-

tivity, i.e. the subalgebra generated by two elements of O  is associative. The alge-

braic properties of O  are described by the multiplication table - Table 1 [15]. This 

table could also be presented by the following relations: 

 kijkijji eeee ηδ +−=
0

,   7,...,1,, =kji , (8) 

where ijkη  is a totally antisymmetric tensor for ijk = 123, 145, 176, 246, 257, 347, 

365 and 
iii
eeeee ==

00
, 

000
eee = . 

Table 1 

Multiplication table for octonions 

× e0 e1 e2 e3 e4 e5 e6 e7 

e0 e0 e1 e2 e3 e4 e5 e6 e7 

e1 e1 –e0 e3 –e2 e5 –e4 –e7 e6 

e2 e2 –e3 –e0 e1 e6 e7 –e4 –e5 

e3 e3 e2 –e1 –e0 e7 –e6 e5 –e4 

e4 e4 –e5 –e6 –e7 –e0 e1 e2 e3 

e5 e5 e4 –e7 e6 –e1 –e0 –e3 e2 

e6 e6 e7 e4 –e5 –e2 e3 –e0 –e1 

e7 e7 –e6 e5 e4 –e3 –e2 e1 –e0 

 

Further generalizations are possible using Cayley-Dickson construction, which 

could result in sedenionic (16D) complex algebra, pathionic (32D) complex alge-

bra, chingonic (64D), etc., however the algebras beyond octonions do not satisfy 

even alternativity algebraic property and thus cannot be composition algebras. 
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Another algebras could be constructed by using tensor product of the above-

mentioned ones [15]. In the following way the biquaternions HC⊗  could be con-

sidered, which consider the complexes of C  and reals of H . This algebra holds 

the properties of H , i.e. it is non-commutative and associative. Moreover it fulfills 

the multiplication properties of octonions, i.e. the multiplication table (see Table 1) 

is the same for HC⊗ . The same operation forms the bioctonionic algebra OC⊗ , 

which holds properties of O . Other combinations are possible, e.g. quateroctonions 

OH⊗  or octooctonions OO⊗ , however such algebras are not alternative, 

i.e. there exist two elements of each of these algebras, which does not continue 

the associative subalgebra [16]. 

2. Bioctonionic J-set and other generalizations 

The biquaternions introduced in [1] have the modified structure of (3): 

 x+=
0
xz ε , (9) 

where parameter ε  could assume three values: 1
2
−=ε  (ordinary complex numbers), 

1
2
=ε  (double numbers) and 0

2
=ε  (dual numbers) [17]. Such an approach could 

be generalized to bioctonions. The equation (1) for them takes the form: 

 czz kk +→
+

2

1
ε , OC⊗∈cz, . (10) 

The equation (10) maps 8D Euclidean space ( 1
2
=ε ), 8D Galilei-Newton space 

( 0
2
=ε ) and 8D Minkowski space ( 1

2
−=ε ) on itself (cf. [5, 17]). The following 

cases generated by (10) could be presented: 

 czz kk −−→−
+

2

1
ε , (11) 

  czz kk +→
+

2

1
ε , (12) 

 czz kk −−→−
+

2

1
ε , (13) 

where c+=
0
cc . The sets (11)-(13) are invariant under a reflection defined by the 

bioctonion conjugation. Moreover, there is additional invariance: 

 oozz kk =′ , oo kk εε =′ , oocc kk =′ , 1=oo . (14) 

This implies the equivalent form of (10): 

 ( ) czz kk
′+′′→′

+

2

1
ε . (15) 
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If all points C∈
0
z , then the points C∈kz  for the Julia set CJ , thus OCC ⊗

⊆ JJ . 

Considering (14), which defines the symmetries of OC⊗J , the bioctonion o  takes 

form (see [18]): 

 
2

sin
2

cos

2
tan1

2
tan1

2

ϕϕ

ϕ

ϕ

c

cc

c

+=

+

+

=o , (16) 

where ϕ  is the angle of rotation. Equation (16) shows, that the above-presented 

constructions are rotation-invariant. Hence, the OC⊗J  could be fully defined by two 

numbers, 
0
c  and c . 

Conclusions 

The paper presented the analysis of existence and symmetry properties of bio- 

ctonionic J-sets. The bioctonionic algebras could be used for construction of three 

types of equations for the generation of 8D hypercomplex J-sets and it was shown 

that the further generalization of J-sets on higher-dimensional hypercomplex 

algebras and alternative algebras, like quateroctonions and octooctonions, is not 

possible because of loss of their algebraic properties. 
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