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Abstract. The dual phase lag equation describing the temperature field in a 3D domain is 

considered. This equation supplemented by boundary and initial conditions is solved by 

means of the boundary element method using discretization in time, while at the same time 

the Dirichlet and Neumann boundary conditions are taken into account. Numerical realiza-

tion of the BEM for the constant boundary elements and constant internal cells is presented. 

The example of computations concerns the temperature field distribution in a heated 

domain. The conclusions connected with the proper choice of time step and discretization 

of the domain considered are formulated. 

Introduction 

The dual phase lag equation describes a number of thermal problems, among 

others the heat transfer in microscale [1, 2] or thermal phenomena occurring in living 

organisms subjected to strong external heat sources [3, 4]. So far, this equation 

supplemented by boundary and initial conditions solved mainly by using the finite 

difference method [5-7]. 

In the paper the algorithm based on the boundary element method using discre-

tization in time is proposed. At the first stage the derivatives with respect to time 

are replaced by the differential quotients and next to the obtained in this way equa-

tion a weighted residual criterion is applied. In this criterion, the weight function, 

called a fundamental solution, is known which allows one to derive boundary inte-

gral equation. To solve this equation the numerical algorithm for constant boundary 

elements and constant internal cells is presented. 

An example of computations concerns the temperature field distribution in 

heated cube the dimensions of which are expressed in nanometers. The influence 

of the time step and the number of boundary elements on the results of the calcula-

tions is discussed. In the final part of the paper the conclusions are formulated. 
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1. Formulation of the problem 

The dual-phase-lag equation has the following form 

2 2

2

2

( , ) ( , ) ( , ) ( , )
( , ) ( , )q T q

T x t T x t T x t Q x t
c T x t Q x t

t t tt

 ∂ ∂ ∂∇ ∂
+ τ = λ∇ + λτ + + τ 

∂ ∂ ∂∂ 
 (1) 

where c is the volumetric specific heat, λ is the thermal conductivity, τq is the 

relaxation time, τT is the thermalization time, Q (x, t) is the source term, T is 

the temperature, x are the spatial co-ordinates and t is the time. 

This equation is supplemented by the boundary conditions 
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where Tb (x, t) is the known boundary temperature, qb (x, t) is the known boundary 

heat flux and Tp is the initial temperature. 

It should be pointed out that using the dual phase lag model the following form 

of second type boundary condition should be considered 
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where n is the normal outward vector and ∂(⋅)/∂n is the normal derivative. 

2. Boundary element method using discretization in time 

Let T 
f
 = T (x, f ∆t), where ∆t is the time step. Then, for time t 

f
 = f ∆t ( f ≥ 2) 

the following approximate form of equation (1) resulting from the introduction 

of adequate differential quotients can be proposed 
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or 
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Using the weighted residual method criterion (WRM) [8] one obtains 
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where T 

*
 (ξ, x) is the fundamental solution and for the 3D objects oriented in 

a rectangular co-ordinate system it is a function of the form 
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where r is the distance between source point ξ and field point x. 

One can check that the fundamental solution fulfills the equation 
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where δ (ξ, x) is the Dirac function. 

On the basis of formula (9) the heat flux resulting from fundamental solution q
 * 

(ξ, x) = −λ ∂T
 *
(ξ, x)/∂n can be calculated in analytical way, namely 
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where 
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while cos αe are the directional cosines of the normal boundary vector. 

Applying the second Green formula to the first component of criterion (8) and 

taking into account the fundamental solution property (10) one obtains the follow-

ing integral equation 
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where Z
 f
 = −λ ∂T

 f
 / ∂n  and B(ξ) ∈ (0, 1] is the coefficient dependent on the location 

of point ξ. 

It should be pointed out that the boundary condition (4) can be approximated 

as follows 
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In numerical realization of the BEM the boundary Γ is divided into N boundary 

elements, while the interior Ω is divided into L internal cells. For the constant 

boundary elements and constant internal cells the following approximation of equa-

tion (13) appears 

 ( )2 1 1 2

1 1 1

N N L
f f f f f

i j j i j j i l l l l

j j l

G Z H T P C T DT ET F
− − −

= = =

= + ∇ + + +∑ ∑ ∑  (16) 

where 

 *1
( , )d

j

i j i jG T x

Γ

= ξ Γ
λ ∫

 (17) 

and 

 

* ( , )d ,

0.5,

j

i j

i j

q x i j

H

i j

Γ

 ξ Γ ≠


= 
− =

∫
 (18) 

while 

 * ( , )d

l

i l i l
P T x

Ω

= ξ Ω∫  (19) 

Introducing the boundary conditions (2) (cf. formula (15)) into the linear algebraic 

equations (16) one obtains the equations for the unknown Z 
f
 on the boundary Γ1 



Solution of dual phase lag equation by means of the boundary element method using discretization in time 93

and unknown T 
f
 on the boundary Γ2. After solving the system of equations (16), 

the temperatures
 
T 

f
 at the internal points ξ i are calculated using the formula 
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3. Results of computations 

The micro-domain (cube) of dimensions 50 nm × 50 nm × 50 nm made of gold 

is considered. On the upper surface the Dirichlet condition Tb = 500 K is assumed, 

on the remaining surfaces the Neumann condition qb = 0 is accepted. Initial tem-

perature is equal to Tp = 300 K. The following input data are introduced: thermal 

conductivity λ = 315 W/(mK), volumetric specific heat c = 2.5 MJ/(m
3
K), relaxa-

tion time τq = 8.5 ps, thermalization time τ T = 90 ps, source function Q = 0. 

The boundary is divided into N constant boundary elements (squares) and 

L constant internal cells (cubes). It is assumed that h = l / n, where l is the length of 

the side of the cube, n is the natural number and then N = 6 n
2
, L = n

3
. The frag-

ment of Delphi code in which the boundary and internal nodes coordinates are 

defined is presented in [9]. 

In Figure 1 the heating curve at the central point of cube for a different number 

of boundary elements and internal cells (n = 10, n = 15, n = 20) under the assump-

tion that time step is equal to ∆t = 0.2 ps is presented. As it can be seen, for n = 10 

(600 boundary elements and 1000 internal cells) the results are not satisfactory, 

while for n = 15 and n = 20 the temperatures are almost the same. 

 

 

Fig. 1. Heating curve at the central point for different mesh density 
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An important problem is the proper choice of the time step. Figure 2 shows that 

when the time step is too small (here ∆t = 0.1 ps), even for a dense mesh the results 

are incorrect. 

 

 

Fig. 2. Heating curve at the central point for different mesh density and to small 

of a time step 

It should be pointed out that for the assumed boundary and initial conditions in 

reality heat transfer takes place only in the z-direction (1D problem). In Figure 3 

the temperature profiles along the axis z for correctly chosen values of n and ∆t, 

this means n = 20 and ∆t = 0.2 ps, respectively, are shown. 

 

 

Fig. 3. Temperature profiles (n = 20, ∆t = 0.2 ps) 
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Conclusions 

To solve a dual phase lag equation, the boundary element method using discre-

tization in time is proposed. The calculations show that this method gives good 

results under the assumption that the time step and the number of internal and 

boundary elements are well chosen. 

Since the application of a very large number of boundary elements and internal 

cells significantly increases the computation time to solve the dual phase lag equa-

tion, the other variants of the boundary element method should therefore also be 

developed, for example, the general boundary element method [10]. 
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