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Abstract. The necessities of processing of spatial data require developing new feature- 

-sensitive tools such as extensions of the wavelet transform. Considering the advantages of 

the application of complex wavelets and their extension to quaternionic wavelets for two-

dimensional data structures, the new octonion discrete wavelet transform for the analysis of 

three-dimensional data structures was introduced in this paper. The construction of the 

wavelet pyramid as well as octonionic wavelets were presented. 
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Introduction 

The modern demands of spatial data processing require efficient tools for data 

analysis and feature extraction. One of the intensively developed branches of tools 

for data processing is the wavelet transform, which allows for a great variation of 

scaling and wavelet functions, which could be applied during the transform in 

order to fulfill the requirements of the specific tasks. 

However, despite the great localization properties in both spatial and frequency 

domain, the real-valued wavelets lack the shift-invariance and directional selectivi-

ty properties. Such properties have the complex-valued wavelets [1], because the 

independent filterbanks of real and imaginary wavelets constitute the Hilbert trans-

form pair [2]. This explains why great attention is paid to the complex wavelets, 

complex wavelet transforms and their generalizations. 

Many authors developed the complex extensions of real-valued wavelets [3, 4] 

and new complex wavelets [5,6]. The natural extension of the complex wavelets and 

complex wavelet transform is the hypercomplex transform with appropriate wave-

lets. The next generalization of a complex wavelet transform is the discrete quater-

nion wavelet transform (QWT), which operates on the quaternion (hypercomplex) 

numbers of 4D vector space. The QWT was introduced in [7] and extended in [8] 

for the application to 2D image processing. The continuous version of QWT was 

introduced in [9]. Further, several researchers used QWT for various problems: 

Soulard and Carré [10] used QWT for texture classification, Liu et al. [2] presented 

a study of measuring of image sharpness based on quaternion wavelets, while 

the authors of [11, 12] applied QWT for texture and banknote classification. 
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The goal of the following study is to extend the QWT algorithm applicable to 

2D datasets to octonion wavelet transform (OWT), which could be applied for the 

analysis of 3D datasets and ensures the shift-invariance and directional selectivity 

properties. The formulation of OWT including the multiresolution pyramid as well 

as formulation of octonionic wavelets structure were under consideration in this 

paper. 

1. Octonion wavelet transform 

1.1. Octonion algebra 

The octonions (known also as Cayley numbers) are the hypercomplex numbers 

of 8-dimensional vector space, which could be presented as: 
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where O  is the octonion algebra, R∈
i
x  are the real coefficients and 

i
e  are the 

orthogonal imaginary numbers, i.e. 1
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neither commutative 

 ijijji eeeeee ≠−=  for 0, ≠ji  (2) 

nor associative 

 ( ) ( ) ( )kjikjikji eeeeeeeee ≠−=  for 0,, ≠kji , (3) 

the multiplicative rules for them differed with respect to the complex algebra C  or 

quaternionic algebra H. The description of the operations on octonions could be 

found in [13]. The conjugate of o is defined as: 

 { }
77665544332211

* xexexexexexexexo
o

−−−−−−−= , (4) 

while the norm is defined as: 
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which satisfies the following property: 
2121
oooo ⋅= . 

Extending the polar decomposition of H  [12], the octonion o could be decom- 

posed in the same manner: +

×≅−= RSOO
7

}0{ , where 7
S  is not a group as for 

quaternions, )2(
3

SU=S , it has a structure called a loop [14]. Similarly as in [12], 

the octonion could be decomposed as follows: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ηζεδγβα
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where o  is the modulus of o and ( )ηζεδγβα ,,,,,,  are the phase angles. 
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1.2. Octonionic wavelet pyramid 

Following Mallat’s multiresolution algorithm the 3D data structure f(x,y,z) 

could be presented in the decomposed form as follows: 
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where o in the superscript was used for indicating octonion 3D analytic signal 

defined e.g. in [15], ( )zyxfA
o

n
,,  and ),,(

,

zyxfD
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ji , 7,...,1=j , are the approximation 

and details sets of coefficients of ( )zyxf ,, , respectively. The two latter sets could 

be then presented in terms of scaling function ( )zyx
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,,Φ  and wavelet functions 

( )zyx
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j ,,Ψ  as follows 
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which could be obtained by the iterative determination of impulse responses 
o

h  

and 
o

g  of the filters ( )zyx
o

,,Φ  and ( )zyx
o
j ,,Ψ  following Mallat’s algorithm. 
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decomposed in the following way: 
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where ( )•φ  and ( )•ψ  are the 1D complex filters applied along the directions x, y 

and z. Considering the filter representation of OWT the octonionic scaling and 

wavelet functions (14) could be presented in the following way: 
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It could be noticed that 
ooo

hhh , ooo

ghh , ooo

hgh , ooo

ggh , ooo

hhg , ooo

ghg , 
ooo

hgg  and ooo

ggg  are eight possible combinations of octonion filters. 

Similarly to the complex and quaternionic analogues OWT produces iterative 

octonionic sequences as follows: 
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i.e. the approximation set from the level 1−i  to level i corresponds to the trans-

forming of one octonionic approximation set to a new quaternionic approximation 

set lowered eight times with respect to the previous one due to the downsampling 

operations. 

Conclusions 

The octonion wavelet transform presented in this paper extends Mallat’s multi- 

resolution algorithm by introducing the octonion wavelets. Their hypercomplex 

nature allows one to reach the shift-invariance and directional selectivity, which 

is not possible during the application of classical 3D discrete wavelet transform. 

The presented transform allows to improve the analysis of 3D data structures, such 

as magnetic resonance imaging applied in the medicine or computer tomography 

used for the material characterization and non-destructive testing. 
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