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Abstract. The presented work is focused on the basis of mathematical and numerical  

descriptions of the binary alloy solidification problem. The mathematical formulation is 

based on the so-called substitute thermal capacity, which implies a change in the specific 

heat of solidifying material. In the literature one can find many ways to define this parame-

ter. Five models, differing in the description of the substitute thermal capacity as well as the 

numerical model using the finite element method (FEM) are considered.  
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Introduction  

Solidifying alloy is a complex system of related physical processes taking place 

in the same time from nano- to macroscale. The formation process of the casting 

can be divided into four main phases: 

• The pouring phase when the molten material is introduced into the mold. The 

phase is accompanied by intense mixing occurring mainly as a result of forced 

convection. 

• Cooling in the liquid state phase when the forced convection of the liquid grad-

ually disappears giving way to movement caused by the phenomenon of natural 

convection, the intensity of which is determined by the degree of change in den-

sity of the material caused by changes in temperature. 

• The solidification phase, which is characterized by solid phase growth. The pro-

cess of liquid-solid phase transformation is egzoenergetic, accompanied by  

release of heat to the surrounding area.  

• Cooling in the solid state phase during which the temperature of the casting is 

lowered to a value which allows removing it from the mold and carry out the  

final treatment. 

The most important stage in the formation of casting is the solidification phase 

since it determines the structure and quality of the final product. Numerical model-



E. Węgrzyn-Skrzypczak, T. Skrzypczak 136

ing of this process has been a widely discussed problem for many years in the liter-

ature. The key task of the creator of the numerical model is an appropriate descrip-

tion of the process of  the heat emission and transport in the solidifying area. In the 

case of binary alloys so-called models with substitute thermal capacity are often 

used [1-4]. The models based on the enthalpy [5, 6] are very popular either. 

1. Mathematical model  

The binary alloy solidification problem in the two-dimensional region is con-

sidered. Solid phase appears on the cooled boundary when the temperature drops 

below the liquidus temperature TL and it coexists with the liquid phase until the 

temperature reaches the solidus temperature TS. Participation of the solid phase is 

a dimensionless parameter fs from the interval [0, 1]. There are three zones in the 

analyzed region, where ΩS contains solid, ΩL is filled with liquid while ΩS+L is 

a mixture of phases. The boundaries between them coincide with solidus and  

liquidus isotherms (Fig. 1). 

 

 

Fig. 1. Subregions in the considered problem 

The basis of the mathematical description of the problem is the equation of  

energy (1), where the classical heat diffusion equation is supplemented by a source 

term which describes heat emission during solidification: 
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where T [K] denotes temperature, cm [J/(kgK)] is averaged specific heat, ρm [kg/m
3
] 

- averaged density, λm [W/(mK)] - averaged coefficient of thermal conductivity,  

L [J/kg] - latent heat of solidification, t [s] - time, s - index referring to solid. 

Averaging of material parameters is carried out using the parameter fs: 
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Participation of the solid phase is a function of the temperature and indirectly of 

time fs = fs(T), therefore equation (1) can be written in the following form: 
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By introducing simplification through the adoption of solid density ρs equal to 

the average density of the mushy zone ρm substitute thermal capacity is obtained: 
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Equation (4) can then be rewritten in the form shown below 
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Equation (6) shall be complemented by the appropriate boundary and initial 

conditions: 
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where Tb [K] is known temperature on the boundary Γ1, qb [W/m
2
] - known heat 

flux through the boundary Γ2, nT ∂∂  - directional derivative of temperature, n - 

vector normal to the boundary Γ2, α [W/(m
2
K)] - convective heat transfer coeffi-

cient, T∞ [K] - ambient temperature, T0 [K] - initial temperature. 

Equation (6) with the boundary conditions (7)-(9) and the initial condition (10) 

are the basis of the mathematical model of the solidification problem. There are 

several methods for calculating ceff(T) [1, 3]. Assuming a linear distribution fs(T) in 

the temperature range [TS, TL], a constant value of substitute thermal capacity is  

obtained (Fig. 2a): 
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a)  b)  c)  

Fig. 2. Distribution of ceff for hypothesis 1-3 

Assuming a linear distribution ceff (Fig. 2b) the following expression is used: 
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where the parameter cmax can be determined from the following relationship [1]: 
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Distribution of ceff can also be described using the curve of degree p (Fig. 2c) 

where p is usually accepted in the range of 5-7 [1]: 
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In addition to this one can find descriptions of ceff based on the phase equilibri-

um diagram. Borisow (15) and Samojłowicz (16) models are examples of such an 

approach [1, 7]: 
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where k is the coefficient of phase separation, Tp [K] - melting temperature of pure 

iron, Tz [K] - liquidus temperature at a given concentration z0, mL [-] - the slope of 

the liquidus line, mS [-] - the slope of the solidus line. 
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2. Numerical scheme  

Starting from the criterion of the method of weighted residuals [8] equation (6) 

is multiplied by the weighting function w and integrated over the region 

LSLS +
Ω∪Ω∪Ω=Ω : 

 0=Ω








∂

∂
−









∂

∂

∂

∂
+









∂

∂

∂

∂
∫
Ω

d
t

T
c

y

T

yx

T

x
w effmmm ρλλ  (17) 

Further the weak form of (6) can be written as the following sum of integral 

terms 
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where qb is heat flux normal to the external boundary Γ. 
 

Using Galerkin formulation [8] wi(x, y) = Ni(x,y) is adopted, where Ni are the 

shape functions of the finite element. This assumption leads to the local energy 

equation in the following form: 
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Integral terms appearing in equation (19) can be replaced by the corresponding 

elements of the following matrices: 
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where K
(e)

 is local heat conductivity matrix, M
(e)

 - heat capacity matrix,  

B
(e)

 - right-hand side vector. 

Using equations (20)-(22) the local FEM equation is written in the following 

form: 
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Derivative of the temperature with respect to time is approximated by the 

scheme shown below 
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where f is the level of time, ∆t [s] - time step. 
 

Using above scheme in equation (23) and aggregating over entire mesh the 

global equation is obtained 
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This equation results from the Euler's backward time discretization scheme [8]. 

Conclusions 

The presented mathematical and numerical models of the binary alloy solidifi-

cation process are the basis for creating a solver which makes it possible to out 

numerical simulations of solidification of steel. 
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