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Abstract. In this paper, the results obtained from five models of the solidification with  

substitute thermal capacity were compared. The calculations were carried out for steel  

containing 0.35% carbon with using an in-home solver based on the finite element method 

(FEM). A comparison was made on the base of analysis of the cooling curves at selected 

nodes. 
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Introduction 

The main assumptions of the mathematical and numerical models used in the 

presented paper were discussed in detail in [1]. Numerical modeling of solidifica-

tion can be divided into solidification at a constant temperature, for example in 

case of pure metals [2, 3]  or solidification in the range of temperatures. Solidifica-

tion of  the binary alloy occurs in a range of [TS, TL] temperatures specifying the 

beginning and the end of the process. Inside the area limited by liquidus (TL) and 

solidus (TS) the emission of heat is observed. In the case of steel, for the simplicity 

of numerical implementation, models with so-called substitute thermal capacity are 

widely used [4-7]. An introduction to the model with substitute thermal capacity 

comes down to a suitable modification of the function describing  increase in ther-

mal capacity in the mushy zone [1]. In this case, regardless of the adopted function, 

the integration procedure within the limits of  [TS, TL] should lead to the same value 

of total thermal capacity. However, the results of numerical models can be different 

due to the adopted quality of the spatial discretization, time step, etc. Using an  

in-home solver based on the finite element method the results obtained from  

implemented numerical models of the solidification with substitute thermal  

capacity were compared. 



E. Węgrzyn-Skrzypczak, T. Skrzypczak 142

1. Mathematical and numerical descriptions 

The basis of the mathematical model is an equation of energy [1]: 
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where T [K] denotes temperature, ceff [J/(kgK)] is substitute heat capacity, ρm 

[kg/m
3
] - averaged density, λm [W/(mK)] - averaged coefficient of thermal conduc-

tivity, t [s] - time. 
 

Equation (1) is supplemented by  the boundary conditions of the first and  

second kind and appropriate initial condition:  
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where Tb [K] is temperature on the boundary, qb [W/m
2
] - known heat flux,  

nT ∂∂  - directional derivative of temperature, n - vector normal to the boundary 

Γ2, T0 [K] - initial temperature. 
 

Substitute thermal capacity is determined using the following hypotheses: 

Hypothesis 1 [4]: 
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Hypothesis 2 [4]: 

 ( )
SL

S
sseff

TT

TT
cccTc

−

−

−+=
max

)(  (6) 

where cmax is determined from the following equation [4]: 
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Hypothesis 3 [4]: 
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Hypothesis 4 - Borisow model [4, 7]: 
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Hypothesis 5 - Samojłowicz model [3, 6]: 
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where cm, cs [J/(kgK)] are average specific heat and specific heat in solid phase  

respectively, L [J/kg] - latent heat of solidification, k - phase separation coefficient, 

Tp [K] - temperature of melting of pure iron, mL - tangent of the slope of the liqui-

dus line, mS - tangent of the slope of the solidus line. 
 

Using the procedures of spatial and implicit time discretization [8] with respect 

to equation (1) leads to the global FEM equation [1]: 
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where K denotes the heat conductivity matrix, M - heat capacity matrix, B - right- 

hand side vector, ∆t [s] - time step, f - time level. 

2. Examples of calculation 

Computer simulations of the solidification were made assuming the material 

properties of steel containing 0.35% carbon (Tab. 1). The calculations were carried 

out in the rectangular area of dimensions 200 x 50 mm (Fig. 1). 
 

 

Fig. 1. Boundary and initial conditions 
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They were made in five series each time changing the way of mathematical  

description of substitute thermal capacity. Boundary and initial conditions are  

presented in Figure 1. Such a choice of boundary conditions has made facilitate 

comparison of position of the solidus and liquidus isotherms at selected moments 

of time for subsequent distribution hypotheses of ceff. The time step and the  

material properties were constant. 

Table 1 

Alloy material properties [4] and parameters used in the calculations  

Parameter Solid phase Liquid phase 

c [J/(kgK)] 690 820 

ρ [kg/m3] 7500 7200 

λ [W/(mK)] 35 20 

TS, TL [K] 1743, 1778 

L [J/kg] 2.7·105 

p 6 

Tp [K] 1811 

k 0.49 

mL, mS –94.826, –194.826 

 

In Table 2 the position of the solidus-liquidus isotherms in selected moments 

for five solidification hypothesis are collected. As a result of the introduction of 

appropriate boundary condition on the left wall of the tested area and the thermal 

insulation on the other walls, solid phase grows in a horizontal direction from left 

to right side, with the result that TS and TL isotherms are arranged vertically, paral-

lel to each other. This allows easy and precise determination of their temporary  

positions on the horizontal axis. 

Table 2 

Comparison of the temporary positions of the isotherms TS and TL 

 

 

Hypothesis 

Time 

250 s 500 s 750 s 

position  

of isotherm 
(TS ) 

[mm] 

position  

of isotherm 
(TL) 

[mm] 

position  

of isotherm 
(TS ) 

[mm] 

position  

of isotherm 
(TL) 

[mm] 

position  

of isotherm 
(TS ) 

[mm] 

position  

of isotherm 
(TL) 

[mm] 

1 82 89 116 124 142 152 

2 83 88 117 123 143 151 

3 83 87 117 123 142 149 

4 85 90 120 126 146 154 

5 83 90 116 126 142 154 
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Temporary positions of the solidus and liquidus isotherms are similar. This is 

due to the fact that the average specific heat in the solid-liquid area in each case has 

a similar value, which implies a comparable rate of solidification. 

For a more comprehensive analysis of the results a comparison of cooling 

curves at selected nodes in the test area was made. In Table 3 coordinates of the  

selected nodes are collected, while in Figures 2-4 a comparison of  the cooling 

curves is presented. 

Table 3 

Coordinates of selected nodes 

 

Index of node 

Coordinates 

x [mm] y [mm] 

297 50 50 

5078 100 50 

5573 150 50 

 

The graphs of cooling curves in selected nodes (Figs. 2-4) clearly show good 

agreement between compared hypotheses of distribution ceff.  

 

 

Fig. 2. Cooling curves for node 297 (x = 50 mm) 
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Fig. 3. Cooling curves for node 5078 (x = 100 mm) 

 

Fig. 4. Cooling curves for node 5573 (x = 150 mm) 
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Conclusions 

Tested models of solidification with substitute thermal capacity give compara-

ble results. Each of the compared hypotheses can be used for modeling solidifica-

tion of steel. In the case of other alloys such as bronze, brass or aluminum alloys 

the agreement between the discussed models may be less [4]. In-home computer 

program, thanks to its flexibility, allows easy modification of solvers and relatively 

comfortable adaptation to solve three-dimensional problems.  
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