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Abstract. In this paper we consider a pentadiagonal matrix which consists of only three 

non-zero bands. We prove that the determinant of such a matrix can be represented by 

a product of two determinants of corresponding tridiagonal matrices. It is shown that such 

an approach gives greatly shorter time of computer calculations. 
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Introduction 

This paper constitutes generalization of results presented in [1]. Let us consider 

a pentadiagonal matrix of the form 
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It means that nnijn aA
x
][=  where 0=ija  for 2>− ji  and for 1=− ji . Determi-

nant 
n
W  of matrix 

n
A  can be represented by a particular solution of fourth order 

linear recurrence equation (see [2]) 
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with initial conditions of the form 
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Now, let us introduce two auxiliary tridiagonal matrices of order k  
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and 
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By *

kW , **

kW  we denote the determinants of matrices *

kA , **

kA  respectively. Follow- 

ing [2], we can represent determinant 
*

kW  by a particular solution of second order 

linear recurrence equation 
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with initial conditions of the form 
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In the same way we obtain recurrence relation for determinant **

kW  
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where 

 






−=

=

2442

**

2

2

**

1

cbaaW

aW
 (9) 

The main results 

In this section we show the relationship between the determinant of matrix 
n

A  

and determinants of matrices *

kA , **

kA . 

Theorem 1. Let 
n

A , *

kA , **

kA  be the matrices given by (1), (4), (5) and 
n
W , *

kW , 
**

k
W  be their determinants respectively. Moreover, let us assume that 1

**

0 =W . Then 

the following statements hold: 

1) If 12 −= kn  then 

 ∗∗∗

−−
⋅== kkkn WWWW

112
, 

2

1
,,2,1
+

=
n

k K  (10) 

2) If kn 2=  then 

 ∗∗∗

⋅== kkkn WWWW
2

, 
2
,,2,1
n

k K=  (11) 

Proof. We are to prove that every determinant 
n
W , N∈n , given by relationships 

(10) and (11) satisfies recurrence equation (2) with initial conditions (3). 

Firstly, we prove that initial conditions (3) can be obtained from (10) and (11).  

Substituting consecutively k = 1, k = 2 into (10) and (11) we have 

 *

1

**

01 WWW ⋅=  

 *

1

**

12 WWW ⋅=  

 *

2

**

13 WWW ⋅=  

 *

2

**

24 WWW ⋅=  

Simultaneously from (3), (7) and (9) under the assumption that 1
**

0 =W  we obtain 
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So, it was shown that initial conditions (3)  can be obtained from (10) and (11). 

Secondly we are to show that every determinant 
n
W , 4>n , given by relationships 

(10) and (11) satisfies recurrence equation (2). Substituting n = 2k – 1 into (2) we 

have 
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+−= kkkkkkkkkkkk WccbbWcbaWaW  (12) 

At the same time from (10) and (11) we get 
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Hence we have to show that equation 
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holds for every N∈k . 

We start with the left-hand side of equation (14). Bearing in mind (8) we obtain 
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Let us observe that at the end of the above transformations we have obtained the 

right-hand side of equation (14). 

Now, let us substitute n = 2k into equation (2) 

 kkkkkkkkkkkk WccbbWcbaWaW
21222423212224232324242 +++++++++++

+−=   
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From (10) and (11) we get 
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Moreover, from (13) we take the formulae for 32 +kW  and kW2 . Hence we must 

prove that the equation  
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holds for every N∈k . 

We start with the left-hand side of the equation (16). Bearing in mind (6) and (8) 

we have  
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Hence we have obtained the right-hand side of equation (16), which ends the proof. 

Example 

Let us consider a special form of pentadiagonal matrix (1) in which elements 

on diagonals are defined by sequences of the form ( ) ka
n

kk =
=1

, ( ) kb
n

kk 2
3
=

=
, 

( ) 32
2

1
−=

−

=
kc

n

kk
. Moreover, we assume that 6

10=n , i.e. the matrix has the order 
6

10 . The value of the determinant of the considered matrix will be obtained in two 

ways.  

Firstly we apply fourth order linear recurrence equation (2) with initial condi-

tions (3), which in this case have the forms 

 ( )
nnnn

WnnnnWnnnWnW 12)12)(82)(62()12)(82)(3()4(
134

+−++++++−+=
+++

  

 0,18,2,1
4321
==== WWWW  

where 410,...,2,1
6
−=n . 

Let us observe that the above recurrence equation has functional coefficients, 

hence it is impossible to solve this equation using known analytical methods [3]. 

The proper algorithm for computing the determinant of this matrix will be imple-

mented in the Maple system [4]. We apply the following steps: 



J. Borowska, L. Łacińska 26 

:)])10..1,(([:
6

== nnseqevalfa  

:)])10..3,2(,0,0([:
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6
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[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ):31132434:]4[ aacbcbWaW ⋅−⋅⋅⋅+⋅=  

[ ] [ ]
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]1[24]3[]3[]4[:]4[
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doend
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]))1000000[(( Wevalfprint  

Finally we get 5866732
1043082825.6 ×−  as the value of determinant of the matrix 

under consideration.  

Secondly, we apply Theorem 1, from which we have 

 ∗∗∗

⋅=
5000005000001000000
WWW  

where determinants *
W , **
W  will be obtained from formulae (6), (7) and (8), (9). 

These formulae in this case have the following forms: 
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+

∗

+
−+−+= kkk WkkWkW 146432
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Let us denote *
WF = , **

WG =  and apply the following syntax: 
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[ ]
:

:][12]32[]1[]32[:]2[

4999981

doend

dotofromfor
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[ ] [ ] [ ] [ ]:2442:]2[ cbaaG ⋅−⋅=  
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doend
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[ ]))500000]500000[(( GFevalfprint ⋅  

Finally we get 5866732
10430935419.6 ×−  as the value of determinant of the matrix 

under consideration. The presented results were obtained with the Maple default 

precision (Digits = 10). It has to be emphasized that the running time of the first 

algorithm was 40 s, whilst of the second was 17 s. 

Conclusions 

It was shown that the determinant of the pentadiagonal matrix, which consists 

of only three non-zero bands, can be represented by a product of two determinants 

of corresponding tridiagonal matrices. This means that this determinant is obtained 

as a product of particular solutions of two second order homogeneous linear recur-

rence equations. 

In the presented example we dealt with a 66
1010 ×  pentadiagonal matrix. In 

order to obtain the determinant of the considered matrix we used two approaches. 

Firstly we had a formulated algorithm based on proper fourth order homogeneous 

linear recurrence equation. In second algorithm we used the theorem proved in this 

paper. Both algorithms were implemented in the Maple system. It turned out that 

time of calculations was shorter in the second approach. 
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