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Abstract. In the paper the influence of the eigenvalues of the matrix on the stability of 

the numerical simulations of binary alloy solidification process was analyzed. One step Θ 

scheme time integration for the modeling was used. The occurrence of the equation clotting 

full, diagonal and lumped capacitance matrix was considered. In the explicit schema 

(conditionally stable) the major influence on the proper selection of the size of the critical 

time step was proved. The physically incorrect results are given when the maximum 

allowable time step is exceeded. 
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Introduction 

Eigenvalues of the matrix used in numerical simulations has been well known, 

for instance, in the solidification process. The paper focuses on the numerical model 

of the matrix including eigenvalues. 

The solidification phenomenon is described by the equation of heat conduction: 
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where T - the temperature, t - the time, λ - the thermal conductivity, ρs - the density 

of the solid phase, L - the latent heat of solidification, fs - solid phase content 
defined as the quotient of the volume of solidified and total volume of the grain 

after solidification. In the mold: fs = 1 = const, and in the liquid: fs = 0 = const. 

When the right side of equation (1) is equal to null, the pattern is reduced to 

the ordinary heat conduction equation without source. Equation (1) with the initial 

and boundary conditions is the basis of the temperature description of solidifica- 

tion [1]. 

In order to describe the enthalpy spin of the solidification, the concept of enthalpy 

has been introduced [2]: 
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where Tref is the reference temperature and cρ is the heat capacity, one can pass to 

the so-called enthalpy description of the solidification process. A few types of 

enthalpy formulations of solidification exist. One of them is so-called apparent heat 

capacity formulation: 
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containing the effective heat capacity (c
*
), which is obtained by differentiating 

equations (2) with respect to temperature [2]: 
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Using the Finite Element Method, the equation (3) is converted to an ordinary 

differential equation with a derivative of temperature with respect to time: 
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where M is capacity matrix, K - the conductivity matrix, T - the temperature vector. 

Vector b(T) is computed on the basis of the boundary conditions. 

The θ Euler integration over time scheme is chosen for the numerical integration. 

When θ = 1 then the scheme is implicit and unconditionally stable. If θ = 0 then 

the scheme is explicit and conditionally stable. Conditional stability is determined 

by the size of the time step. In turn, the time step size is limited by the eigenvalues 

of the matrices M and K. 

For equation (5) in the matrix form, the correlation between the eigenvalues 

of the matrix and the size of the time step for three different matrix capacities 

(full, diagonal and lumped) [3] will be considered. 

1. Reducing the size of the time step 

The numerical method is called stable if the error at any stage of solution moves 

further from the declining value. Numerical stability is reached when the condition 

is fulfilled: 

 |g| ≤ 1 (6) 

where g is a gain factor associated with the integration scheme over time. Condition 

(6) is limited to the finite issues. 

To determine the stability criterion of the numerical method, the transformative 

operations on the matrix equation of the freezing point to the general issue of its 
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eigenvalues is used. Depending on the form of matrix M (full, diagonal, lumped), 

the method of determining the inverse matrix is a more or less complicated process. 

In the case of a diagonal matrix, the inversion and calculation of the eigenvalues 

is not a problem. Eigenvalues can be listed from the smallest to the largest and 

designate the time step on its basis. 

If the matrix M is a matrix of full inversion, the above described process is not 

trivial and requires the use of various converting operations. 

The correct mathematical methods in this case are the Cholesky decomposition 

and the Rayleigh quotient. Using these equations provides the scalar equation [4]. 

Equation (5) obtained as a result of spatial discretization, after using one-step 

integration scheme is transformed to following form: 
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In the case when we put θ = 0 (explicat shame), the size restrictions of the time-

step in the analysis of the numerical stability result from eigenvalues of the 

Rayleigh quotient [4]. For numerical stability, of explicit schema, the homogene-

ous part of equation (5) is only considered: 
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which after the transformations related to the eigenvalues provides: 

 .λ =Mv Kv  (9) 

Because of the semi-discretization, the equation (9) is achieved for λ = λi 

and v = vi , where i is the i-th element of the grid. 

Because of the physical phenomenon, the M matrix is positively defined and 

the Cholesky decomposition can be done; so that: M = LL
T
 where L is a lower 

triangular and a non-singular matrix. 

Using such a distribution in equation (7) and multiplying both sides of the 

equation by L
–1
 provides: 
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where L
T
vi is the eigenvector and λ is the eigenvalue of a symmetric matrix 

M = L
–1

K(L
–1
)
T
. The M matrix is a set of linearly independent eigenvectors vi. 

If the matrix V is composed of vi being the columns of the matrix and L
T 

V is 

orthogonal, the following formula can be formed: 

 .

T T T
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Equation (9) and Cholesky decomposition process provides: 
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Substituting T = Vx to the equation 7 and left-multiplying it by V
T
, the follow-

ing formulas are obtained: 
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and 
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where Λ = diag (λi). This distribution is known as the decomposition modeling, 

which makes it possible to save the matrix equations in scalar form: 
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For the issues described by the equation (9), the eigenvalues and corresponding 

eigenvectors can be determined. In contrast, the eigenvalues for the equation (12) 

can be derived from the Rayleigh quotient: 
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After appropriate transformations in which the assembling of the matrix method 

is included, the constraints of eigenvalues resulting from the Rayleigh quotient is 

obtained. It has the following form: 
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From the inequality (17) the largest eigenvalue of the matrix is selected. 

On the basis of that matrix, the size of the critical time-step used later in numerical 

simulations of solidification is determined. 

2. Results 

In the calculation the capacity matrix (as a full, diagonal and lumped) was 

considered. At the end of calculations the oscillations occur for the full matrix 

of numerical simulation of the solidification process. The whole simulation is run 

properly and gives results consistent with the physics of the phenomenon [4, 5] 

for the lumped matrix. 

The matrix equation of solidification was the base calculation. After appropriate 

transformations, as well as taking into account the sufficient condition for the sta-

bility of the numerical integration scheme [3], the following equation is obtained: 
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 (18) 
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Knowing that the eigenvalues limit the size of a time-step, the eigenvalues 

of the B matrix are determined providing: 

 −

=
1

B M K  (19) 

The following three forms of capacity matrices were used in these calculations: 

a) full: 

2 1 1

1 2 1

1 1 2

 
 
 
 
 

 

eigenvalues of 1;4;1 

b) diagonal: 

1 0 0

0 4 0

0 0 1

 
 
 
 
 

 

eigenvalues of 1;4;1 

c) lumped: 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 

eigenvalues of 1;1;1 

The second round of calculations was related to determining the value of their 

own capacity for the invertible matrix in the order of the calculations in the first 

round: 

a) 1; 0.25; 1 
b) 1; 0.25; 1 
c) 1; 1; 1 

The obtained results prove that the ratio of the eigenvalues of the full matrix to 

the eigenvalues of the lumped matrix is 4:1 [6]. Therefore, the time-step determined 

on the basis of the eigenvalues' values is also subject to the same limitation. This 

situation is reflected in the normal course of calculation in the numerical simulations 

of the solidification. For the simulations carried out with the time-step set based 

on eigenvalues of the lumped matrix, the calculations are always stable. However, 

if the numerical solidification of the simulation process are carried out to the full 

capacity matrix, the time-step size should be limited by the maximum eigenvalue 

of the matrix for the final stage not to cause oscillation. 
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