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Abstract. In this paper we present a numerical scheme to calculations of the left fractional
integral. To calculate it we use the fractional Simpson’s rule (FSR). The FSR is derived by
applying quadratic interpolation. We calculate errors generated by the method for particular
functions and compare the obtained results with the fractional trapezoidal rule (FTR).
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Introduction

Fractional calculus is a generalization of ordinary differentiation and integration
to non-integer order. The subject is as old as the differential calculus. Fractional
calculus is a very useful tool in many scientific areas [1-4]. The fractional deriva-
tives and integrals are a natural extension of the well-known integer order deriva-
tives and integrals.

Recently, the numerical methods are used intensively and successfully to solve
the fractional integral and differential equations [5-9]. However, it is still hard to
develop numerical methods for some fractional equations. Bearing in mind the
above-mentioned facts, many authors propose different approaches to discretiza-
tion and numerical evaluation of the fractional operators [6-11].

In this paper, we propose a new approach to numerical fractional order integra-
tion. We apply methodology that is a fractional equivalent to the Simpson’s rule.
This method is based on quadratic interpolation.

1. Basic definitions

Now we will introduce the following definition and properties of fractional
integration. The left Riemann-Liouville fractional integral of order aeR, is

defined as follows (see [12]):
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where I'(-) denotes the Gamma function.

In the further part of this paper we will use the following properties of the left
Riemann-Liouville fractional integral:
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2. Fractional Simpson’s rule

Let us assume that the interval [0, b] is subdivided into N subintervals [¢;, 1]
with constant time step Az =5b/N by using the nodes ¢, =iAt, for i = 0,1,....N.

We wish to compute an approximation of the fractional integral (1). By the
additivity of integration, we may write the left fractional integral (1) as a sum of
integrals

i-2

_ 1 ! f(T) = 1 & 2j+1 f(T) .
Lol reel e ©

I f(

Next, we replace function f by the quadratic polynomial, which takes the same
values as fat the end points #,; and £, and the midpoint ;.

(T_tz(/+1)(7_t2_/+2) ; _(T_tz_/)(f_tz_nz)
2y () (ar)’

. (r-0,)(z—12,a)

2(Ar)’

f(7)=

f(t2]+1)
(6)

f(t2]+2)

Then we denote the function values as f; = f (#) and put interpolation (6) into the
expression (5)



An approximation of the fractional integrals using quadratic interpolation 15

i

t=t; (Al) I'(x 2(1,- _ z_)1—0:

_ J‘z‘,‘ﬂ (T_IZ/ (T_t2/+2)f2j+1
It

fL-1)"

(
+'[’2_/+1 (T_t2/) - t2/+1) 2j+2 dl’]
2j

I(‘)’if(t)

dr (7)

2j

2(t, - r)

Calculating the integrals included in (7) we obtain following approximation of
the left fractional integral:
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where ¢/, (1—2]) (i—2j—2)ﬂ. When o =1 formula (8) takes the simplified

form
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3. Results

Example 1.
Let us consider the function f () = sin(¢), in Tables 1 and 2 we present the
approximate values of the fractional integral I(‘)’i f (t) at the point t=»b=1 and

errors for different values of order a. We compare our method - the fractional
Simpson’s rule (FSR), and the fractional trapezoidal rule (FTR) which was pro-
posed by Odibat in the paper [11].
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Table 1
The numerical values and errors for integral 13;5 sin (t)|
t=1
FSR FTR
At S(ty.A1,0.5) Err(ty,At,0.5) T(ty.A1,0.5) Err(ty.At,0.5)
0.1 0.6696793673 4.89-10°° 0.6691782509 5.06:107
0.05 0.6696838268 4.33-107 0.6695538539 1.30-107
0.0025 0.6696842213 3.83-107° 0.6696509827 3.32:10°
0.00125 0.6696842562 3.39-107° 0.6696758223 8.44-107°
0.00625 0.6696842593 3.00-107"° 0.6696821295 2.13-10°°
Table 2
The numerical values and errors for integral I;f sin (t)‘ .
t=
FSR FTR
At S(t,.A1,0.5) Err(t,,A1,0.5) T(ty.A1,0.5) Err(t,.At,0.5)
0.1 0.2823242822 1.90-107 0.2820860602 2.36:107
0.05 0.2823225014 1.21-107 0.2822634794 5.89-107°
0.0025 0.2823223880 7.67-107° 0.2823076693 1.47-107
0.00125 0.2823223809 4.85-107"° 0.2823187037 3.68-10°°
0.00625 0.2823223804 3.05-107" 0.2823214613 9.19-1077
The errors were calculated using the following formula:
& ()
Err(ty.Aa)=|Y S(ty.At,cr) (10)

Example 2.

ST(a+2k+2)

In this case we consider the function f{) = cos(¢). We present the approximate
values of the fractional integral Igi f (t) at the point = b = 1 and errors for differ-

ent values of order a in Table 3.

Table 3
The numerical values and errors for integral I“}’ﬂ, cos(t)L=l
a=0.5 a=1.0 a=15
At S(ty.Ata) | Err(ty.Ata) | S(ty.Ata) | Er(ty.Ata) | S(ty.Ata) | Err(ty,Ata)
0.1 |0.8460630299| 6.24-10° |0.8414714528| 4.68-107 |0.6696833800| 8.79-107"
0.05 [0.8460573780| 5.91-107 |0.8414710140| 2.92:10° |0.6696842001| 5.94-107°
0.0025 |0.8460568414| 5.46:10° [0.8414709866| 1.82:107° |0.6696842557| 3.91-107
0.00125 | 0.8460567917| 4.98-10° [0.8414709849| 1.14-107"° |0.6696842593| 2.52:107"°
0.00625 [0.8460567872| 4.49-107'° |0.8414709848| 7.13-1072 [0.6696842596| 1.61-107"
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The numerical values were computed using the FSR and the errors were
calculated using the following formula
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Example 3.

In the last example we consider the function f (f) = exp(f). We present the
approximate values of the fractional integral Igi f (t) at the point r=»=1 and
errors for different values of order « in Table 4.

Table 4

The numerical values and errors for integral I(‘:f+ exp (t)
t=1

a=0.5 a=1.0 a=1.5
At S(ty.Ata) | Err(ty.Ata) | S(ty.Ata) | Err(ty.Ate) | S(ty.Ata) | Ere(ty,.Ata)
0.1 |2290717870 | 1.96:107 | 1.718282782 | 9.53-107 | 1.162315417 | 3.67-10°°
0.05 |2.290700127 | 1.87-10° | 1.718281888 | 5.96:10° | 1.162318841 | 2.44-107
0.0025 | 2.290698427 | 1.74-107 | 1.718281832 | 3.73:107° | 1.162319069 | 1.59-107°
0.00125 | 2.290698268 | 1.59-10° | 1.718281829 | 2.33-107'° | 1.162319084 | 1.02:107°
0.00625 | 2.290698254 | 1.44-10° | 1.718281828 | 1.46-107"" | 1.162319085 | 6.50-107"!

The numerical values were computed using the FSR and the errors were
calculated using the following formula

o0
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Conclusions

In this paper a new formula for numerical calculation of fractional integrals was
presented. We derived our numerical scheme using quadratic interpolation. We
compared the FSR with FTR. In comparison with FTR [11], our method (FSR)
is more accurate. The approximation derived in this paper can be used directly
in numerical methods for the solution of fractional order integral equations. Our
results can be also extended to the right fractional integrals and to the fractional
derivatives.
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