
Journal of Applied Mathematics and Computational Mechanics 2016, 15(2), 119-125

www.amcm.pcz.pl p-ISSN 2299-9965

 DOI: 10.17512/jamcm.2016.2.13 e-ISSN 2353-0588

USING PROBABILISTIC AUTOMATA FOR SECURITY

PROTOCOLS VERIFICATION

Olga Siedlecka-Lamch
1
, Mirosław Kurkowski

2
, Jacek Piątkowski

1

1Czestochowa University of Technology, Institute of Computer and Information Sciences
Częstochowa, Poland

2Cardinal Stefan Wyszynski University in Warsaw, Institute of Computer Sciences
Warszawa, Poland

olga.siedlecka@icis.pcz.pl, m.kurkowski@uksw.edu.pl, jacekp@icis.pcz.pl

Abstract. The article discusses the issues of modeling and the analysis of executions,

which is a substantial part of modern communication protocols - authentication protocols,

which are generally referred to herein as security protocols. The article presents a way of

security protocols executions analysis with the use of probabilistic automata, without well

known and widely used perfect cryptography assumption (we assume allowing the possibil-

ity of breaking a key with a specified probability). This type of analysis leads to interesting

observations about the operation of the protocol and its weaknesses.

Keywords: verification of security protocols, probabilistic methods

1. Introduction

Since the inception of the idea of security protocols for network communication

a problem of verification of their correctness also exists. We want to ensure that the

protocol will not only be performed, but also have guarantee of confidentiality of

transmitted data, participants authentication or distribution of new session keys.

There are many formal methods to check or prove if this property is assured

(deductive or model checking methods). We can use many protocol specification

languages (HLPSL [1], ProToc [2], CAPSL [3]), and many tools for automatic ver-

ification like AVISPA [1], VerICS [4] or PathFinder [5] (which uses the method of

chains of states). However, all of those analyses and tests are made with one fun-

damental assumption: the assumption of perfect cryptography - the inability to

decode the corresponding ciphertext without knowing the encryption key. Let's

change this assumption: communication does not require the strongest keys and

security, generation and implementation of which will take a lot of resources. We

need to match the level of security to the level of confidentiality of communica-

tions. We can therefore investigate an acceptable probability level of an attacker

compromising and runs that faster or slower result in it.

O. Siedlecka-Lamch, M. Kurkowski, J. Piątkowski 120

On the basis of the constructed earlier model of chains of states [6], we can gen-

erate a probabilistic automaton that models a protocol's run. We assume the exist-

ence of an Intruder, who listens, gathers information and during the run of the pro-

tocol, tries to break keys that occur during communication. This assumption meets

with the well-known Dolev-Yao intruder model [7]. Everything that was previous-

ly only straight path gains branching - is expanded by a probability distribution

because of the likelihood of a breaking the key of a sent message, and all keys that

were used earlier - in the previous step. After adding of the probability of breaking

a key and generating a model for the assumed Intruder version we can try to

answer many interesting questions, for example:

- Is it profitable for the Intruder to break all the keys from the set of keys that ap-

pear during communication, or perhaps a specified subset will be sufficient to ob-

tain complete information and make an attack or perhaps just a subset of that

received full information and made an attack?

- At which level is the Intruder able to get the full knowledge and which of the

keys he will have to break?

Thus, counting the total probability of reaching the particular state in the

automaton, we can calculate which elements of communication require a stronger

or weaker level of security.

2. Chains of states

In the following section, the idea of chains of states will be presented. As it will

be shown, these chains describe all important behaviors of the system from model-

ing and checking point of view and can be used for formal specification of the con-

sidered protocol.

As an example, let’s consider the Wide Mouth Frog protocol created by Bur-

rows, Abadi and Needham [8]. The Protocol is described in so-called Common

Language. In the expressions presented below the proper symbols mean according-

ly: A, B: the participants, S - server,
AB
K ,

AS
K ,

BS
K : symmetric keys, T - are

timestamps.

We assume that the symmetric key
AB
K is known only to users A and B. The

scheme of the protocol’s execution is as follows:

{ }

{ }

1

2

AS

BS

A AB K

s AB K

A S : A , T ,B ,K

S B : T , A ,K

α

α

→

→

 (1)

A sends a session key to S, including a timestamp TA. S checks that the first

message is timely, and if it is, it forwards the message to B, together with its own

timestamp TS. B then checks that the timestamp from S is later than any other it has

received from S. The αi denotes a step of protocol. The protocol must guarantee the

Using probabilistic automata for security protocols verification 121

secrecy of the new shared key KAB: in every session, the value of KAB must be

known only by the participants playing the roles of A and B and S.

The protocol must guarantee the authenticity of KAB in every session, on the

reception of message in second step, B must be ensured that the key KAB in the

message has been created by S in the same session on behalf of A.

In 1995, Anderson and Needham published a proposal of an attack on the Wide

Mouth Frog protocol [9]:

{ }

{ }

{ }

{ }

{ }

{ }

1

1

1

2

2

1

2

2

3

1

3

2

AS

BS

BS

AS

AS

BS

A AB K

S AB K

S AB K

'

S AB
K

'

S AB
K

' '

S AB
K

A S : A , T ,B ,K

S B : T , A ,K

I(B) S : B , T , A ,K

S A: T ,B ,K

I(A) S : A , T , B ,K

S B : T , A ,K

. . .

α

α

α

α

α

α

→

→

→

→

→

→

 (2)

The
j

iα denotes i-th step of j-th execution of the protocol.

The Intruder repeats the message from the server, so he can make the server S

update the timestamp of a non-fresh key KAB. This way, he can extend the life time

of a (possibly compromised) key KAB as wanted, whereas A and B think that it has

expired and has been destroyed.

Now we add our model to this example. In the approach of chains of states, we

define four types of states:

• states that represent specific executions of steps of the protocol. States of this

type will be determined further by:
j

iS , where the parameter i specifies the

number of step in the corresponding execution of the protocol, and the j param-

eter specifies the number of execution,

• states that represent a fact of generation of confidential information (nonces,

encryption keys) by the users. These states will be denoted by
x

u
G , which means

generation of the secret X by user U,

• states that represent the fact of learning the different elements of the message

(which may be ciphertext) by the receiver. These states are denoted by
x

u
K -

acquiring knowledge by the user U about the X,

• states representing the need of a user to have knowledge about the information
necessary to compose and send a message in the next step, those states will be

marked by
x

uP - the user U must possess knowledge about the X.

Using the above notation, we can represent WMF protocol as a sequence of states:

O. Siedlecka-Lamch, M. Kurkowski, J. Piątkowski 122

()
()

1

1 1

2

1 1

A AB A AB

S SAB AB

T K T K

A A S S

T TK K

S S B B

G ,G , S , K , K

P ,G , S , K , K

α

α

=

=

 (3)

Now we see in detail, which information is needed (P), which generated (G) to

send the message, and what is the state of the knowledge (K) of communication

participants after each step (S).

The principle of operation of the protocol with chains of states can be easily

visualized using deterministic automaton:

 ()0
DA: Q , , , q , FδΣ (4)

where:

Q is a finite set of states (chains),

Σ is a finite set of input symbols (step of protocol),

δ is a transition function: Q Qδ ⊆ ×Σ× ,

q0 is an initial state,

F is a set of accepting (final) states F Q⊆ (in our case all states are final).

The automata model for the Wide Mouth Frog protocol is shown in Figure 1.

In the first step user A generates the timestamp and the symetric key for a new

session, and the server gains this knowledge. In the second step the server needs

this generated key and generate his own timestamp. User B after the second step

has the knowledge about the servers' timestamp and the symetric key KAB.

3. Probabilistic automaton

In this section we will consider situations in which there is some minimal, but

a certain probability of breaking a key. For modeling the behavior and knowledge

of the Intruder we will use probabilistic automaton:

Fig. 1. DA for WMF protocol

Using probabilistic automata for security protocols verification 123

 ()0
PA: Q , , , q , FδΣ (5)

where:

Q is a finite set of states,

Σ is a finite set of input symbols – here a power set of all keys,

δ is a transition function: [0 1]Q , Qδ ⊆ ×Σ× × ,

q0 is an initial state,

F is a set of accepting (final) states F Q⊆ (in our case all states are final).

Fig. 2. PA for WMF protocol

For further analysis it is necessary to define the knowledge that the Intruder

gains during the execution of the protocol. Let us denote Know(q) as knowledge of

the Intruder in state q. For each path of automaton, the Intruder expands his

knowledge of the transmitted ciphertext or its content - if he broke the key.

Consider the automata model for the Wide Mouth Frog protocol. The first

figure (equivalent to the first and third formulas) shows in every state: the needed

knowledge; generated information; gained knowledge; and knowledge of the

Intruder depending on which key he broke.

Every level of automaton is connected with the concrete step of the protocol.

If the Intruder didn't break the key KAS, after the first step he possesses only the

ciphertext, in the other case he knows all important information (which is marked

by the orange color) - timestamp and key KAB that will be used in new session.

In second step, if the Intruder hadn't earlier broken the key, he will take a further

attempt to break the key KAS or KBS or both, with an appropriately established

probability.

O. Siedlecka-Lamch, M. Kurkowski, J. Piątkowski 124

Fig. 3. WMF protocol with attack

The next figure shows the situation in which the Intruder repeats the second step

of the protocol (equivalent to the second formula), which gives him more time to

break the keys. As shown, the Intruder is continuing only those paths on which he

has not gained the full necessary knowledge - in this case: timestamp and the key

for the new session. In every step the probability of breaking each of the symmetric

keys grows. Some of the selected paths are preferred from the Intruder’s point of

Using probabilistic automata for security protocols verification 125

view, due to possible breaches of only one key, in the longest period of time - for

example path with key KAS.

As shown in above examples, we can easily calculate the probability by the

Intruder obtaining confidential information (for given values of probability of

breaking respective keys).

4. Conclusions

The paper presents a new approach to analise and verify protocol safety. The

use of model of chains of states allows for simple and intuitive presentation of pro-

tocols execution. It also allows to easily search for any possible attacks. However,

in this model, we can go a step further by trying to match the level of security to

our needs and possibilities. So we analyse not only the possibility of a standard

attack, but also the probability of breaking the key. We build probabilistic automata

in which we show knowledge collected by the Intruder in every step of protocol

depending on, even a really small probability of breaking the given key. After con-

structing such automaton, we can get information about the need to strengthen or

the possibility of weakening the security of some keys used by the protocol.

References

[1] Armando A. et al., The AVISPA tool for the automated validation of internet security protocol-

sand applications, Proc. of 17th Int. Conf. on Computer Aided Verification (CAV’05), vol. 3576

of LNCS, Springer 2005, 281-285.

[2] Kurkowski M., Grosser A., Piątkowski J., Szymoniak S., ProToc - an universal language for secu-

rity protocols specification, [in:] Advances in Intelligent Systems and Computing, eds. A. Wiliń-

ski, I.E. Fray, J. Pejas, Springer Verlag 2015, Vol. 342, 237-248.

[3] Millen J., Denker G., MuCAPSL, Proc. of DISCEX III, DARPA Information Survivability Con-

ference and Exposition, IEEE Computer Society 2003, 238-249.

[4] Kurkowski M., Penczek W., Verifying security protocols modeled by networks of automata,

Fund. Inform. 2007, 79 (3-4), 453-471.

[5] Siedlecka-Lamch O., Kurkowski M., Szymoniak S., Piech H., Parallel bounded model checking

of security protocols, Proc. of PPAM’13, vol. 8384 of LNCS, Springer Verlag 2014, 224-234.

[6] Siedlecka-Lamch O., Kurkowski M., Piech H., A new effective approach for modelling and veri-

fication of security protocols, Proceedings of 21th International Workshop on Concurrency, Spec-

ification and Programming (CS&P 2012), Humboldt University Press, Berlin 2012, 191-202.

[7] Dolev D., Yao A., On the security of public key protocols, IEEE Transactions on Information

Theory 1983, 29(2), 198-207.

[8] Burrows M., Abadi M., Needham R., A logic of authentication, ACM Transactions on Computer

Systems 1990, 8, 18-36.

[9] Anderson R., Needham R., Programming satan's computer, Computer Science Today, LNCS

1995, 1000, 426-440.

