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Abstract. This article is devoted to some problems connected with multicriteria decision 

analysis. We consider the relationship between the pairwise comparison matrix (PCM) 

and a priority vector (PV) obtained on the basis of this matrix. The PCM elements are 

the  the decision makers’ judgments about priority ratios i.e. the ratios of weights contained  

in the PV. It is known, that in the case of consistent matrix, we can obtain the exact value of 

related PV. However, the real-world practice shows that the decision maker does not create 

a perfectly consistent PCM, and thus usually in such a matrix the judgment’s errors occur. 

In our paper we use Monte Carlo simulation to study the relationship between various 

possible distributions of these errors  and the distributions of the errors in estimates of the 

true PV. In these simulation we apply some initial families distribution and some different 

parameters. We obtain interesting results which show very slight influence families distri-

bution on final PV errors. Our paper show that much bigger influence on simulation result 

have adopted parameters than selection distribution family. 
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1. Introduction 

In multicriteria decision analysis (MDA), the aim is to rank a finite number 

of alternatives with respect to a finite number of attributes (criteria), i.e. to find 

a priority vector (PV) that elements reflect, how much each alternative is desired 

with respect to a given attribute and then to develop an overall ranking with respect 

to all attributes. In the analytic hierarchy process (AHP) the decision maker (DM) 

compares alternatives (each one to all the others) with respect to a particular attrib-

ute and puts their judgements about all priority ratios into the pairwise comparison 

matrix (PCM). This approach is justified by psychology, which says that our brain 

gives the most exact judgments when we compare only two stimuli at once. When 

we compare only two stimuli and we consider only one criterion, we can quite 
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precisely tell how many times one is better (or worse) than the other. The number 

is called a priority ratio [1]. 

When we compare two objects we usually describe our judgment about the rela-

tive preference with an adverb. When we create a PCM, we need to know numbers 

which indicate how many times one alternative is better than any other. So, 

Thomas Saaty has proposed a scale, which we can use to translate comparing 

words (adverbs) to numbers [1]. Despite its usefulness, its disadvantage is that it  

cuts down the set of possible ratios to 8 numbers. It is clear that sometimes we 

need more than 8 ratios, so rounding to Saaty’s scale will cause, in this case, 

unavoidable errors in our PCM (e.g. [2-5]). 

When we have a given PCM, we must obtain the PV in order to get information 

about DM's priorities. There are a lot of PCM-based PV estimation methods allow-

ing us to extract the PV from the PCM [6-12]. All the methods work well when 

the PCM is consistent [1, 2, 6, 8, 9, 13]. However the real-world practice shows 

that DM-s judgments are usually inconsistent [1, 2, 6, 8]. There is a number of 

inconsistency indices whose task is the “measuring” of inconsistency of the PCM 

[8, 9, 14-16]. In practice, many users use this indices to evaluation correctness their 

researches. For this purpose they assumed the suggested by Saaty or other authors 

level of the indices value [1, 13]. However, it is still not known whether the smaller 

value of a given index is related to smaller value of PV estimation errors. We do 

not know what is the relationship between priority ratios disturbances in the PCM 

and errors in the PV obtained from this PCM. This relationship is important 

because practitioners often try to improve the PCM gained from judgments in ques-

tionnaires but they can’t be sure that they improve final PV. So, in our paper, 

we try observe this relationship. 

2. The prioritization problem - formal preliminaries 

Formally, the PV is an n-dimensional vector � = [��,��, … ,��] with compo-

nents �� ∈ �0,1�, ∑ �� = 1�
��� , describing the degree of fulfillment of an attribute 

or all attributes with particular alternatives. 

 

Definition 1 

The Pairwise comparison matrix � = [���]�×� is a matrix with the elements ���  
that are interpreted as DM judgments about priority ratios ��/��. 

 

Definition 2 

A given matrix � = [���]�×� is called a reciprocal PCM if the condition  

 ��� = 1/���  (1) 

holds for any i, j = 1,2,…,n. 
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Definition 3 

A given matrix � = [���]�×� is called a consistent PCM (or cardinally transi-

tive) if it is reciprocal and its elements satisfy the condition: 

 ��� ∙ ��� = ��� (2) 

for all i, j, k = 1,2,…,n. 

 

Theorem 1 

The necessary and sufficient condition for any positive matrix � = [���]�×� to 

be consistent PCM is the existence of a certain vector � = [��,��, … ,��] satisfying 

��� =
����  (3) 

for all i, j = 1,2,…,n. 

Therefore in the ideal case, when the DM creates a consistent PCM, the follow-

ing equation holds: 

 �	
��� × � = 
 ∙ � (4) 

This means that in a consistent case the PV is the eigenvector of the PCM 

corresponding to eigenvalue n, which is the principal eigenvalue of PCM, i.e., 

the largest solution of the characteristic equation:	���(� − ��) 	= 	0. 
However, as we mentioned earlier, consistent case rarely occurs. If the PCM 

is not consistent we assume that priority ratios can be expressed by the following 

stochastic model [3, 6, 8, 17-19]: 

��� = ��� ����  (5) 

Probability distributions of the so-called perturbation factor ���  (PF) mainly in-

volve gamma, log-normal, uniform (e.g. [8, 11, 12, 17, 18]) and truncated normal 

(e.g. [6, 19, 20]). In our study, we also consider the four most popular ones. 

According to Theorem 1, in the inconsistent case we cannot find PV which 

would satisfy equation (4). In such a case, Saaty proposed using the normalized 

right eigenvector associated with the largest eigenvalue as an estimate of the true 

PV [1-3]. Therefore, to obtain the PV estimate (PVE), we need to solve the general 

eigenvector equation: 

 �	
 × � = � ∙ � (6) 

where: � - principal eigenvalue of PCM, � - eigenvector connected to �. 
However it is not the only method used to obtain PVE. Another popular one 

recommended by Crawford & Williams [17, 21-23], is  the geometric mean proce-
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dure (GM). To calculate elements of the PV within this method we use the follow-

ing formula: 

�� = ������

���

�
� �� �������

���

�
� ���

���

�  (7) 

This is a very simple method and in AHP  practice it is applied almost as frequently  

as REV and that is why we use it in our simulations. 

If we assume in our model that elements of the PCM satisfy condition (5) with 

a certain p.d. of PF, it is clear that the PVE (obtained by any method) will contain 

errors. Such errors can be defined (measured) in various ways. However it is 

argued, see [8, 9], that in the context of AHP, the so-called mean relative error 

is much more important than the others. This is defined by following: 

����,�� =
1
�|�� − ��|��

�

���

 (8) 

where: �� - elements of initial PV, �� - elements of PVE obtained from disturbed 

PCM. In our paper we use this definition for the estimation errors. 

3. Simulation frameworks 

We have mentioned that in practice it is not possible to get such DM judgments 

that create a consistent PCM. We have also said it is obvious that disturbances 

in PCM result finally in PVE errors. It seems to be the truth but here another ques-

tion is arising: What is the influence of disturbances in the PCM on errors in the 

PVE? Are disturbances in the PCM proportional to final errors in the PVE? What is 

the relationship between the probability distribution of the PF and the distribution 

of errors in the PVE? In order to answer these questions, we perform Monte Carlo 

experiments (see e.g. [6, 8]). 

In our simulations, we consider three different dimensions of PV, 
 = 4, 5, 6 

and 12 different probability distributions of the PF (denoted as �	, � = 1, … 12) 
belonging to the one of 4 distribution families. The simulation experiments consist 

of the following steps: 

1. Randomly generate elements of a PV: � and make the related perfect PCM 

based on formula (3). 

2. For each element in the upper triangle of the PCM, randomly generate value ���  
according to chosen �	 and replace element ���  by ������ . 

3. Replace elements in the lower triangle of the PCM with the reciprocities of 

appropriate elements from the created upper triangle. 

4. After all replacements use the GM to calculate the PVE: �. 
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5. Calculate relative error in PVE in comparing with the initial PV, i.e. ��(�,�). 

6. Repeat steps 1 – 5: 
� times for 
 - dimension PV (16, 25 or 36 times respec-

tively for 
 = 4, 5, 6). 

7. Repeat steps 1 – 6:  300 times. 

8. Return value of errors ��(�,�) assigned to appropriate 
 and �	 and save it 
in database. 

In our simulation we use 4 of the most recommended probability distribution 

families in literature, i.e. gamma, log-normal, truncated normal and uniform, 

[6, 8, 11, 18-20]. In each case the distribution parameters are arranged so that 

the PF possesses the following features [3, 5, 18]: 

1. Expected value of ���  equals 1. 
2. Standard deviation of ���  is equal to   being given positive constant  < 1 

(in our experiments   = 0.1, 0.2 or 0.3). 
To satisfy the above requirements, we adopt the following parameters for the 

particular distribution families: 

•  = 0.1 

o gamma: Γ(100, 0.01) 

o log-normal: !"#$ %−
�

�
&
�1.01�,  '&
(1.01)( ≈ 	!"#$(−0.005, 0.1) 

o truncated normal:	)*+
,	�0.7, 1.3� $(1,  0.1) 

o uniform: -
.(1 − 0.1√3, 1 + 0.1√3) ≈ -
.(0.827, 1.173) 

•  = 0.2 

o gamma: Γ(25, 0.04) 

o log-normal: !"#$ %−
�

�
&
�1.04�,  '&
(1.04)( ≈ !"#$(−0.02, 0.198) 

o truncated normal: )*+
,�0.4, 1.6� $(1,  0.2) 

o uniform: -
.(1 − 0.2√3, 1 + 0.2√3) ≈ -
.(0.654, 1.346) 

•  = 0.3 

o gamma: Γ %11
�



, 0.09( ≈ Γ(11.111, 0.09) 

o log-normal:	!"#$ %−
�

�
&
�1.09�,  '&
(1.09)( ≈ !"#$(−0.043, 0.294) 

o truncated normal: )*+
,�0.1, 1.9� $(1,  0.3) 

o uniform: -
.(1 − 0.3√3, 1 + 0.3√3) ≈ -
.(0.48, 1.52) 

4. Results 

Under the described above framework, we have obtained a database of relative 

errors in the PVE. These errors gained in a random sample are realizations of certain 

random variables which have their own probability distributions. We do not know 

what their distributions are in the analytic meaning, but we know the realization of 
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these distributions. Thus when we analyse the gained database, we get information 

about estimate parameters and approximate probability distributions of real ones. 

Our database contains subsets of 4800, 7500 or 10800 outcomes respectively 

for PV dimensions: 4, 5 or 6. In order to compare relative errors in the PVE 

obtained for a different distribution of PCM disturbances, we have calculated some 

parameters of these errors distributions. For each distribution of the PF, we calcu-

late the following sample parameters: minimum and maximum value, mean, stan-

dard deviation and quantile of rank: 0.05, 0.1, 0.5, 0.9, 0.95. We have collected 

values of parameters in tables (Tables 1-5 in the Appendix A). In these tables, 

we have collected results describing the PVE error distributions, gained for chosen 

dimensions of the PV and chosen standard deviations of the PF probability distri-

butions. In each table, results are collected for each considered distribution family. 

The presented tables show us the following interesting findings: 

1. The means and all rank quantiles in most cases have similar values. 

2. Maximum and minimum values and standard deviations are different but do not 

manifest any dependence on the shape of the initial distribution. 

3. None of the initial distributions generate parameters which are tendentiously 

bigger or smaller than parameters gained for other initial distributions. 

4. The means, all rank quantiles and minimum values increase when the standard 

deviation of the initial distribution increases. 

5. All rank quantiles in most cases increase when the dimension of the PV 

increases. 

For a better illustration of the similarities and differences of the obtained 

experimental distributions of PVE errors, we also present histograms (Appendix B). 

The histograms of the values of the PF are compared with the histograms of result-

ing estimation errors in the PVE. Thus we have 36 histograms, but we present 

only 6 of them, namely these obtained for 
 = 5 and a chosen standard deviation 

for different families (Figures 1-6). Other histograms present similar dependence, 

so they are omitted here. When we look at these figures, we can notice that PVE 

errors histograms’ shapes in all cases are rather similar, in contrast to histograms of 

the input PCM disturbances. Obviously, here one can observe the same distribution 

features that we can notice when we analyse parameters  presented in Tables 1-5. 

Histograms change when the standard deviation increases, but in the same way as 

it is reflected by the parameters. The shape of the histograms of PVE errors does 

not change significantly when we consider a different standard deviation or various 

PV dimensions. Greater values of these parameters affect only the size of the histo-

grams, not their shapes. The size is bigger and reflects the fact that bigger errors 

occur more frequently. 

All histograms we received in our studies demonstrate similar features. We 

observe that independently of considered distribution family of the PF, when 

the standard deviation of a distribution increases, the histograms also show greater 

support of the PV errors’ distribution. 
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5. Conclusions 

The results of the Monte Carlo simulation presented in this paper involve 

research for some cases of PF’s distributions and size of PV. However, our 

experiment shows visibly some dependencies between priority ratio disturbances 

in the PCM and priority estimation errors in the final PV. Moreover, we have 

observed these dependences practically irrespective of the considered disturbance 

distribution so one can expect the same dependences in case of other distributions. 

We have also considered several variants of the same distribution family and we 

have experienced the same. Although we do not consider all cases of the standard 

deviation, the dependences in the ones shown are clear. This observation are corre-

sponding to research findings obtained by other authors that have made researches 

with using Monte Carlo simulation for example to Kazibudzki [9] because their 

results does not demonstrate dependence of chosen PF distribution. 

However one of the most interesting result for us was the observed shape of 

experimental distributions of errors in the PVE because it was very close for 

completely different PCM disturbance distributions. It probably means that for all 

initial disturbance distributions we will observe the same shape of the probability 

distribution of final errors in PVE. It is a significant conclusion because it means 

the choice of the initial distribution’s family is not as important as the choice of 

the initial distribution’s parameters. This result makes any discussions on family’s 

disturbance distributions useless [11, 12, 17, 18]. Of course for ensuring reality 

of experiments we can use different distribution families or mix them together 

but it probably does not have influence on results. 

When we studied the obtained experiment distributions, we observed quite 

big differences between maximum values and standard deviations and sometimes 

occurring irregular differences between other parameters. Considering this, we 

found that influence on our results would also have the initial PV. Notice that when 

we compare two completely different values of PV’s elements (from [0,1]), we get 

big priority ratios in the PCM. These priority ratios are unlimited in our simulation. 

Of course in the next step of simulation the priority ratios are rounded to Saaty’s 

scale but this operation may cause, in this case, big errors in the obtained value of 

the PVE. Here arise guess that research findings will be different if we apply other 

scale or no scale is applied. This is interesting research field so we are going to 

carry out this kind of researches. 

The next interesting research field is connected with the question about the 

meaningfulness of a PCM inconsistency examination. It is known that in AHP 

practice, one of the routine operations is testing of the so-called inconsistency 

of the PCM which requires one to calculate the so-called inconsistency index 

[1, 6, 8, 9, 13-15]. Although various different inconsistency indices are proposed 

in literature, it is not certain that the more consistent PCM gives less erroneous 

PVE. Many authors study presented in literature inconsistency indices propriety 

[8, 14, 15]. We expect that the conclusions presented in this paper will be helpful 

in the study of the dependence between inconsistency of the PCM and the resulting  
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PV’s correctness. For such simulations it is important to know what the influence 

of disturbance in PCM on PV errors is, and it results from experiments discussed 

here, that the shape of the PF distribution has rather marginal importance. 
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Appendix A 

Table 1 

Parameters of experimental probability distributions of RE in relation to different 

distributions of εij . Input parameters: σ  = 0.1, n = 5, sample size: 7500 

Distributions of 

Priority Disturbance 
Min Max Mean SD 

0.05-

quant 

0.1-

quant 
ME 

0.9-

quant 

0.95-

quant 

 Γ(100, 0.01) 0.007 15.388 0.180 0.760 0.029 0.036 0.067 0.204 0.506 

����(−0.005, 0.1) 0.007 124.114 0.523 5.359 0.031 0.038 0.073 0.407 0.714 

���0.7,1.3�	�(1, 	0.1) 0.004 17.582 0.243 1.053 0.032 0.038 0.073 0.327 0.677 


��(0.827, 1.173) 0.007 12.837 0.253 0.895 0.028 0.035 0.070 0.385 0.971 

Table 2 

Parameters of experimental probability distributions of RE in relation to different 

distributions of εij . Input parameters: σ  = 0.2, n = 5, sample size: 7500 

Distributions of 

Priority Disturbance 
Min Max Mean SD 

0.05-

quant 

0.1-

quant 
ME 

0.9-

quant 

0.95-

quant 

Γ(25, 0.04) 0.009 6.588 0.217 0.550 0.039 0.047 0.093 0.391 0.752 

����(−0.02, 0.198) 0.004 42.114 0.303 1.822 0.040 0.049 0.097 0.405 0.624 

���0.4, 1.6�	�(1, 	0.2) 0.007 16.889 0.302 1.070 0.041 0.051 0.101 0.485 0.897 


��(0.654, 1.346) 0.009 22.366 0.287 1.056 0.041 0.051 0.100 0.466 0.814 

Table 3 

Parameters of experimental probability distributions of RE in relation to different 

distributions of εij . Input parameters: σ  = 0.3, n = 5, sample size: 7500 

Distributions of 

Priority Disturbance 
Min Max Mean SD 

0.05-

quant 

0.1-

quant 
ME 

0.9-

quant 

0.95-

quant 

 Γ(11.111, 0.09) 0.010 90.820 0.798 4.560 0.054 0.067 0.134 0.816 1.596 

����(−0.043, 0.294) 0.008 34.172 0.448 1.879 0.052 0.064 0.125 0.452 1.263 

���0.1, 1.9� �(1,  0.3)  0.010 66.035 0.413 3.057 0.052 0.065 0.130 0.388 0.772 


��(0.48, 1.52) 0.011 56.003 0.392 2.558 0.056 0.068 0.132 0.351 0.690 
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Table 4 

Parameters of experimental probability distributions of RE in relation to different 

distributions of εij . Input parameters: σ  = 0.2, n = 4, sample size: 4800 

Distributions of 

Priority Disturbance 
Min Max Mean SD 

0.05-

quant 

0.1-

quant 
ME 

0.9-

quant 

0.95-

quant 

Γ(25, 0.04) 0.006 22.138 0.217 0.865 0.033 0.042 0.091 0.317 0.674 

����(−0.02, 0.198) 0.007 6.221 0.223 0.530 0.032 0.043 0.094 0.411 0.771 

���0.4, 1.6�	�(1, 	0.2) 0.005 7.785 0.220 0.528 0.032 0.042 0.093 0.371 0.976 


��(0.654, 1.346) 0.007 18.016 0.257 0.911 0.034 0.046 0.101 0.435 0.919 

Table 5 

Parameters of experimental probability distributions of RE in relation to different 

distributions of εij . Input parameters: σ  = 0.2, n = 6, sample size: 10800 

Distributions of 

Priority Disturbance 
Min Max Mean SD 

0.05-

quant 

0.1-

quant 
ME 

0.9-

quant 

0.95-

quant 

Γ(25, 0.04) 0.008 15.446 0.342 1.231 0.043 0.052 0.097 0.476 0.911 

����(−0.02, 0.198) 0.014 29.763 0.290 1.481 0.042 0.051 0.094 0.435 0.892 

���0.4, 1.6�	�(1, 	0.2) 0.009 21.115 0.367 1.325 0.043 0.052 0.096 0.714 1.562 


��(0.654, 1.346) 0.008 12.693 0.305 0.860 0.044 0.052 0.096 0.565 1.164 
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Appendix B 
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Fig. 1. Histogram of a random sample of εij distributed according ��100,  0.01

Size of the sample: 7500 (left-hand side) along the histogram of RE-s 

obtained from 7500 PCMs (5x5) disrupt by these εij’s (right-hand side) 

Fig. 2. Histogram of a random sample of εij distributed according ��25,  0.04

Size of the sample: 7500 (left-hand side) along the histogram of RE-s 

ined from 7500 PCMs (5x5) disrupt by these εij’s (right-hand side) 

Fig. 3. Histogram of a random sample of εij distributed according ��11. 1

,  0.09

Size of the sample: 7500 (left-hand side) along the histogram of RE-s 

obtained from 7500 PCMs (5x5) disrupt by these εij’s (right-hand side) 
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Fig. 4. Histogram of a

Size of the sample:

obtained from 7500 PCMs (5x5) disrupt by these 

Fig. 5. Histogram of a

Size of the sample:

obtained from 7500 PCMs (5x5) disrupt by these 

Fig. 6. Histogram of a
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Fig. 4. Histogram of a random sample of εij distributed according 
�����0.02, 0

Size of the sample: 7500 (left-hand side) along the histogram of RE-s 

obtained from 7500 PCMs (5x5) disrupt by these εij’s (right-hand side) 

Fig. 5. Histogram of a random sample of εij distributed according ���0.4, 1.6� ��

Size of the sample: 7500 (left-hand side) along the histogram of RE-s 

obtained from 7500 PCMs (5x5) disrupt by these εij’s (right-hand side) 

Fig. 6. Histogram of a random sample of εij distributed according ����0.654, 1.

Size of the sample: 7500 (left-hand side) along the histogram of RE-s 

obtained from 7500 PCMs (5x5) disrupt by these εij’s (right-hand side) 
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