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1. Introduction 

A k-tridiagonal symmetric Toeplitz matrix can be written in the form 

 ( )k
n ij n n

T t
×

 =     

where 

 

,

,

0 , .

ij

a i j

t b i j k

otherwise

=


= − =



. (1) 

The Toeplitz structured tridiagonal matrix family can be seen with many studies 

in different areas. Some of them include the solution of ordinary and partial differ-

ential equations [1] in the applied mathematics, including the equilibrium problem 

[2] in the statistical physic, wireless and sensor network applications [3, 4] about 

control theory in computer sciences and the sensitivity of MRNA [5] in molecular 

biology. 
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The aim of this study is to point out some relationships between the permanents 

of the certain type of k-tridiagonal symmetric Toeplitz matrix and the Chebyshev 

polynomials of the second kind. The definition of the k-tridiagonal symmetric 

Toeplitz matrix that is used in this study is given below. 

Definition: Let the k-tridiagonal symmetric Toeplitz matrix 
( )k
n
T  of order n  

with first row be {2 0 0 0 0}
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2
1i = − , n  and k  are positive integers such that 1 .k n≤ ≤   

The matrix ( )k
n
T  was pronounced as the tridiagonal instead of the k-tridiagonal 

throughout in this study. Also, it is worth noting that if 2k =  and 3k =  then the 
(2)
n
T  and (3)

n
T  matrices convert a pentadiagonal and heptadiagonal matrix respec-

tively. But, this nomenclature for 2,3k =  was not used in this study. 

In the literature, much research has been gathered on the relationships between 

the permanent or determinant of some tridiagonal or Toeplitz matrices and the 

famous number sequences or the linear recurrences. For example, Minc [6] gave 

a recursive formula for the permanent of a general tridiagonal Toeplitz matrix. 

Lehmer [7] demonstrated some generalizations for the permanent of a tridiagonal 

matrix by using expansion by minors. Kılıc and Tascı [8] presented some relation-

ships between the permanents of some tridiagonal matrices and some famous num-

ber sequences. Jina and Trojovsky [9] presented new results about the relationships 

between the permanents of some tridiagonal matrices and the Fibonacci numbers. 

Matousova and Trojovsky [10] showed a generalization for sequences of tridiago-

nal matrices which is related to the sequence of Fibonacci numbers. Kaygısız and 

Sahin [11] obtained the permanents of some tridiagonal matrices with complex 

elements in terms of k sequences of generalized order-k Fibonacci numbers. 

Kırklar and Yılmaz [12] gave an important representation for the permanent of 

a k-tridiagonal k-Toeplitz matrix by using the direct sum of the matrices. Yılmaz 

and Bozkurt [13] gave one type of tridiagonal matrix whose permanents are 

Jacobsthal numbers. Of course, the studies on the determinants of special matrices 
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take more space than on the permanents of these matrices. We focused on the few 

that are closest to our study. Elouafi [14] gave the formulas which involve determi-

nants whose entries are the Chebyshev polynomials for a banded symmetric 

Toeplitz matrix. Cahill et al. [15] showed some special tridiagonal matrices whose 

determinant gives the Chebyshev polynomials. Kılıç [16] presented the two differ-

ent representations depending on the parity of n for the permanent of general 

2-tridiagonal Toeplitz matrix that emblematized this matrix with H(a,b,-c). 

Asci, Tasci and Al-Mikkawy [17] gave algorithms for permanents of k-tridiagonal 

matrices using LU factorization. In Trench [18] gave a recursive relation for 

the eigenvalues of a 2-tridiagonal Toeplitz matrix. Bergun and Hoggatt [19] 

gave the recursive relations among the determinants of a general tridiagonal, 

2-tridiagonal and 3-tridiagonal Toeplitz matrix and also gave a representation 

for the determinant of the general k-tridiagonal Toeplitz matrix with respect to the 

determinant of the tridiagonal Toeplitz matrix. Our study focuses on the relation-

ships between the permanents of a certain type of k-tridiagonal symmetric Toeplitz 

matrix with complex entries and the Chebyshev polynomials of the second kind. 

Chebyshev polynomials being a useful mathematical tool, are often utilized 

in the mathematics as well as other fundamental science and the engineering. 

Chebyshev polynomials of the second kind is a polynomial of degree n in x defined 

in [20] by 

 
sin( 1)

( )
sin

n

n
U x

+
=

θ

θ
  

where cosx = θ . The family of the Chebyshev polynomial of the second kind 

{ }( )
n

U x  satisfies the recurrence relation 

 
1 2

( ) 2 ( ) ( )
n n n

U x xU x U x
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= −  (3) 

where 
1
( ) 0U x

−

= , 
0
( ) 1U x = , 

1
( ) 2U x x= . We have referred to Chebyshev poly-

nomials of the second kind as Chebyshev U polynomials throughout in this study. 

The first few Chebyshev U polynomials are 
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Let 
n
S  be the symmetric group which consist of all permutations of 

{1, 2,3,..., }n  and σ  be the element of this group where ( )1 2
, ,...,

n
σ σ σ σ= . Then, 

the permanent of an n n×  square matrix A  is defined by 

 ( )
,

1

.

n

i
i

S i
n

Per A a
σ

σ∈ =

= ∑∏  (5) 

The permanent is a function of the matrix elements such as the determinant 

without using signs for the permutations. For this reason, some operations that 

are applied on the determinant can also be used on the permanent. The Laplace 

expansion is one of these operations. We note that all of the signs used in the 

Laplace expansion of minors are positive. It should be noted that we used the 

Laplace expansion for the permanent throughout in this study. Despite gaining 

more prominence in the recent studies on the permanent such as in [12], the 

contraction method, which is given by Brualdi and Gibson [5], doesn’t work 

for the permanent of a complex matrix. 

2. Main results 

2.1. Relationships between ( ))(k
nTPer  and the Chebyshev U polynomial 

Theorem 1: The permanent of the matrix 
(1)

n
T  is 

 ( )(1)
( )

n n
Per T U x=  (6) 

where ( )
n

U x  is the nth Chebyshev U polynomials and ( )(1)

0 1Per T = . 

Proof: We will use mathematical induction method in this proof. 

For 3n =  
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( ) 2 4 8 ( )
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×
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Thus (6) is provided. Assume that the equality (6) holds for n. So, we have 
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We will now show that equality (6) holds for 1n + , namely 

 
(1)

1 1( ) ( )
n n

Per T U x
+ +
= . (8) 

Firstly, we expand the 
(1)

1( )
n

Per T
+

 by using the Laplace expansion according to 

the first row of 
(1)

1n
T
+
. Then, we obtain 
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1
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( ) 2 0 2

2

0 2 0 2

n
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.  

Secondly, we expand the permanent which appears in the second term of the 

right hand side of the above equation with respect to its first column. So, we obtain 

 

(1) (1)

1 1

1

1

( ) 2 ( ) ( )

2 ( ) ( )

( )

k k k

k k

k

Per T xU x Per T

xU x U x

U x

+ −

−

+

= −

= −

=

 (9) 

which is desired. 

Theorem 2: The permanent of the matrix 
(2)

n
T  is 

 

1

2
(2)

2

0

( ) ( )

n

n n r

r

Per T U x

+ 
 
 

−
=

= ∑  (10) 

where ( )
n

U x  is the nth Chebyshev U polynomials and 
1
( ) 0U x

−

= . 

Proof: We will use the mathematical induction method for the proof. 

Suppose that 5n = . Then 

(2) 5 3
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Thus, the equality (10) is true for 5n = . Assume that the equality (10) holds for n, 

i.e. 

 

1

2
(2)

2

0
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0 2 0

0 2 0

( ) ( )
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0 2 0

0 0 2

n
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We will now show that the equality (10) is also true for 1n + , namely 
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Let us write 
(2)

1( )
n

Per T
+

 by using the Laplace expansion with respect to its first 

column. Then 
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Let’s expand the permanent that appears in the second term of right hand side 

of the equality (13) with respect to its first row. So, we have: 

 (2) (2) 2
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If the permanent appears in the second term of right hand side of the (14) is 

expanded with respect to the its first row, then 
(2)

1( )
n

Per T
+

 will be equal to 

 
(2) (2)

2

2 2

0

0 2 0

0 0 2 0

2 ( ) 2 ( ) 0 2 0

0 2 0
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n n
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i i
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Lastly, we expand the permanent that appears in the third term of right hand side 

of the (15) with respect to its first column. So, we obtain 

 
(2) (2) (2) (2)

1 2 3( ) 2 ( ) 2 ( ) ( )
n n n n

Per T xPer T xPer T Per T
+ − −
= − + . (16) 

We rewrite the equality (16) by using (11), 

 

1 1 2

2 2 2
(2)

1 2 2 2 3 2

0 0 0

( ) 2 ( ) ( ) ( )

n n n

n n r n r n r

r r r

Per T x U x U x U x

+ − −     
     
     

+ − − − − −
= = =

= − +

 
 
 
 
 

∑ ∑ ∑  (17) 

We have two cases depending on the parity of n. Let n be odd. If we arrange 

the equality (17), then we get the following result (18). 

 

( )(2)

1 1 1 3 0

2

2

1 2

0

( ) ( ) ( ) ( )

( )

n n n n

n

n r

r

Per T U x U x U x U x

U x

+ + − −

+ 
 
 

+ −
=

= + + + +

= ∑

K

 (18) 

It is easy to see that the result (18) is obtained also if n is even. Thus, the proof 

is completed. 

Theorem 3: There is a representation for the Chebyshev U polynomials in 

terms of the permanent of 
(2)

n
T  as following: 

 ( ) ( )(2) (2)

2( )
n n n

U x Per T Per T
−

= −  (19) 

where ( )(2)
0

n
Per T =  for 0n ≤ . 
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Proof: Using Theorem 2, we write that 

 ( ) ( )

1

2
(2) (2)

2 2 2 2

0 0

1

2

( ) ( )

n

n n n r n r

r r

n

Per T Per T U x U x

+   
   
   

− − − −
= =

−

− = −∑ ∑ . (20) 

If we replace the upper limit of the first summation in the equality (20) with 

.

1

2
1

n 
 
 

−

+  So, the equality (20) will take the form of 

 ( ) ( )
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such that the right side of (21) is equal to ( )
n

U x . 

Conjecture 4: For 6n ≥  

 ( ) ( )
3

(3)

2 2 4 2 2

0

1 3 ( ) 5 ( ) 1 ( )
n

n n r

r

Per U x U x r U xT

−

−

=
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and for 7n ≥  

 ( )
3

(3)

2 1 1 3 5 2 1 2

0

( ) 2 ( ) 4 ( ) 6 ( ) 1 ( )
n

n n r

r

Per T U x U x U x r U x

−
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=
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where ( )
n

U x  is the nth Chebyshev U polynomial. 

Because of that becomes difficult obtaining of the representations with respect 

to the Chebyshev U polynomials for each k  values of ( )( )k

n
Per T , the study will 

continue the following section. 

2.2. The Recursive Formulas for ( ))(k
nTPer  

In accordance with the Theorem 1, it can be seen that the defining recurrence of 

the Chebyshev U polynomials, given by (3), is true for ( )(1)

n
Per T . 

Result 5: For 2n ≥  

 ( ) ( ) ( )(1) (1) (1)

1 22
n n n

Per T xPer T Per T
− −

= −  (24) 

where ( )(1)

0 1Per T = , ( )(1)

1 2Per T x= . 
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Hereby, we should emphasize that also the equality (16), which is a natural 

result of the Theorem 2, is actually a recursive formula as like (24). This is stated 

below. 

Result 6: For 4n ≥  

 ( ) ( ) ( ) ( )(2) (2) (2) (2)

1 3 42 2
n n n n

Per T xPer T xPer T Per T
− − −

= − +   

with initial conditions ( )(2)

0 1Per T = , ( )(2)

1 2Per T x= , ( )(2) 2

2 4Per T x=  and 

( )(2) 3

3 8 2Per T x x= − . 

Proof: If the equalities (6) and (19) uses together in the equality (24) then 

the expression which is numbered in the first section with (16) can be obtained. 

Theorem 7: If 2n >  is odd  integer then 

 ( ) ( ) ( )(2) (2) (2)

1 22
n n n

Per T xPer T Per T
− −

= −  (25) 

is true such that ( )(2)

1 2Per T x= , ( )(2) 2

2 4Per T x= . 

Proof: It is easily proven using the induction method by n. 

Firstly, we must demonstrate the equality (25) is true for 3n = , i.e. 

 ( ) ( ) ( )(2) (2) (2)

3 2 12Per T xPer T Per T= − . (26) 

By using the Theorem 2, the left side of the equality (26) is 

2

3 2

0

( )
r

r

U x
−

=

∑  which 

yields to 
3

8 2x x− . Likewise, the right side of the equality (26) is 
1 1

2 2 1 2

0 0

( ) ( )2
r r

r r

U x U xx
− −

= =

 
− 

 
∑ ∑  which also yields to 

3
8 2x x− . Thus, it is easy to 

see that the both sides of (26) are equal to each other. 

Now, assume that the equality (26) holds for 2 3n r= + , i.e. 

 
(2) (2) (2)

2 3 2 2 2 1( ) 2 ( ) ( )
r r r

Per T xPer T Per T
+ + +
= −  (27) 

where 0,1,2,...r = . We will show that the equality (26) also holds for 2 5n r= + . 

If equality (16) is rewritten by putting 2 5r +  instead of n, then 

 
(2) (2) (2) (2)

2 5 2 4 2 2 2 1( ) 2 ( ) 2 ( ) ( )
r r r r

Per T xPer T xPer T Per T
+ + + +
= − +  (28) 

is obtained. If the equality (27) into consideration in the equality (28), then 

 
(2) (2) (2)

2 5 2 4 2 3( ) 2 ( ) ( )
r r r

Per T xPer T Per T
+ + +
= −   

is obtained which is desired. 
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Now let us demonstrate the generalization we obtained for 
( )

( )
k

n
Per T . 

Conjecture 8: If 1 ( 1)n k r= + +  then 

 
( ) ( ) ( )

1 2( ) 2 ( ) ( )
k k k

n n n
Per T xPer T Per T

− −

= −  (29) 

where 1,2,3,...k =  and 0,1,2,...r = . 

In examinating the Conjecture 8, firstly the value of k  is assignment, then the 

values of r  are assingment. 

Remark 9: According to the Conjecture 8, it can be clearly stated that 
(3) (4) (5)

( ), ( ), ( )
n n n

Per T Per T Per T ,… cannot be written in terms of themselves like the 

recurrence (16) which is emphasized as the Result 6. 

Let’s explain this remark by giving an example. In the case of 3k = , n  

becomes equal to3 4r + . So, it can be obtained following equalities for the first few 

values of r : 

 
(3) (3) (3)

4 3 2( ) 2 ( ) ( )Per T xPer T Per T= − , (30) 

 
(3) (3) (3)

7 6 5( ) 2 ( ) ( )Per T xPer T Per T= − , (31) 

 
(3) (3) (3)

10 9 8( ) 2 ( ) ( )Per T xPer T Per T= − , (32) 

 
(3) (3) (3)

13 12 11( ) 2 ( ) ( )Per T xPer T Per T= − . (33) 

None of the terms of these equations (30), (31), (32), (33) is repeated in another 

equation. So, it's the evidence that the recursive formula which is written for 
(3)

( )
n

Per T  in terms of itself and is provided for all consecutive n  values cannot be 

obtained.  

However, a recursive representation for 
( )

( )
k

n
Per T  given below was obtained. 

Conjecture 10: Let n  and k  be the positive integers and 2 1n k≥ + . Then 

 
( ) ( ) ( 1) (1)

1 1 1
1 1

( ) 2 ( )
k k k

n n n n
n

k k

Per T xPer T Per T Per T
−

− − −   
− − −   

   

= −

   
   
   
   

 (34) 

where 1k > . 

Result 11: Taking into account the Conjecture 8 and the Conjecture 10 we get 

 
( ) ( 1) (1)

2 1 1
1 1

( )
k k

n n n
n

k k

Per T Per T Per T
−

− − −   
− − −   

   

=
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where ( 1) 1n k r= + −  and r  is a positive integer. If the equality (35) is rearranged 

by taking into the Theorem 1 consideration, we obtain the representation of Cheby-

shev U polynomials in terms of the permanent of 
( )

( )
k

n
Per T  as follows: 

 

( )

( 1)

( )
( )

( )

k

n

r k

n r

Per T
U x

Per T
−

−

=   (36) 

where ( 1) 1n k r= + −  and r  is the positive integer and ( )
r

U x  is the rth Chebyshev 

U polynomials. 

As an example of using the equality (35), let’s take the 3k = : 

 ( ) ( ) ( )(3) (2) (1)

3 2 2 2r r r
Per T Per T Per T

+ +
=  (37) 

So, we get respectively for 1,2,3,4r = . 

( ) ( ) ( )(3) (2) (1)

5 4 1Per T Per T Per T=    

(3)

5
1 (2)

4

( )
( )

( )
,

Per T
U x

Per T

→ = ( ) ( ) ( )(3) (2) (1)

8 6 2Per T Per T Per T=    

(3)

8
2 (2)

6

( )
( )

( )

Per T
U x

Per T

→ = , ( ) ( ) ( )(3) (2) (1)

11 8 3Per T Per T Per T=   

(3)

11
3 (2)

8

( )
( )

( )

Per T
U x

Per T

→ = , ( ) ( ) ( )(3) (2) (1)

14 10 4Per T Per T Per T=    

(3)

14
3 (2)

10

( )
( )

( )

Per T
U x

Per T

→ = . 

3. Conclusions 

In this study, it can be seen that the Chebyshev polynomials can be expressed 

in terms of the permanents of tridiagonal k-Toeplitz matrices which are both band 

and circulant matrices. 

Additionally, some recursive relations for the permanent of the certain type 

of k-tridiagonal symmetric Toeplitz matrix as conjectures are given. 

It can be seen that the recursive representations obtained in this study are simi-

lar to the results in the [19]. 

As a further study, the representation of ( )( )k

n
Per T  with respect to the Cheby- 

shev polynomials can be generalized for 4k ≥  in the Section 2.1.  
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