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Abstract. Real time processing enables online reactions to dynamic environment changes. 

The author focuses on possibilities of implementing the Finite Element Method (FEM) to 

real time algorithms on microcontrollers. The paper presents the current state of the Real 

Time Finite Element Method (RTFEM) and describes results obtained by the author. 

The RTFEM for microcontrollers (with examples of use cases) is presented and results 

of the computations for the chosen platform are given. The results consider optimization of 

RTFEM computational algorithms for a microcontroller taking into account their execution 

time. All the tests were performed on the ARM-CortexM4F based STM32F429ZIT6 

microcontroller. The obtained results were compared, discussed and presented in the paper. 
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1. Introduction 

The real time processing and analysis of signals, implemented on microcontrol-

lers has been present in everyday life for years. The algorithms behind them are as 

simple as possible because of their low computational performance. The real time 

processing enables online reactions to dynamic environment changes. Author 

focuses on the possibilities of implementing the Finite Element Method (FEM) 

to real time algorithms on microcontrollers. 

The following paper focuses on implementing Real Time Finite Element 

Method (RTFEM) computational algorithms on ARM microcontrollers by adjust-

ing the algorithms to a specific structure and requirements of ARM architectures. 

Real time computations and processing of data using microcontrollers is nowa-

days widely implemented in many areas of applications. Taking into account 

the architecture and low computational performance of microcontrollers, the algo-

rithms behind them are as simple as possible. Real time algorithms enable immedi-

ate reactions to dynamic changes of the environment. The author of the paper 
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focuses on possibilities of implementing real time algorithms on microcontrollers 

with the Finite Element Method (FEM). Real time means a previously specified 

time interval in which the computations must be performed so the results would be 

available. The number of floating-point operations that need to be performed 

directly depends on the number of degrees of freedom of the model. The computa-

tional power of microcontrollers and embedded platforms is growing rapidly every 

year, opening up bigger and bigger possibilities for algorithms where a large num-

ber of floating point operations has to be performed. 

In the literature, only a few examples can be found of applications of the Real 

Time Finite Element Method (RTFEM). The greatest problem in the RTFEM is 

the conflict between the accuracy of the results and the execution time of the algo-

rithm. Applications found in the literature involve either RTFEM models where 

results are just very roughly estimated or metamodels based on previous FEM 

calculations. Examples of the applied RTFEM found in the literature consider 

surgery applications (simulations of cuts [1], plastic surgery [2], suturing [3] and 

other procedures), thermal simulations [4], recovering the force and location in 

an impact event [5], part inspection in manufacturing [6] and controlling elastic 

soft robots [7]. 

The purpose of implementing RTFEM algorithms to microcontrollers can be 

performing Hardware-in-the-loop (HIL) simulations. An example of applying 

RTFEM in HIL described in [8] is to use a materials testing machine controlled 

by a microcontroller. A physical part of the tested mechanical system is mounted 

in a dynamic materials testing machine, while the rest of the system is modelled 

using the FEM. In order to control the machine in a closed loop, the microcontrol-

ler has to perform dynamic FEM computations in real time. The algorithm is 

improved in [9] where mode superposition is used to speed up the real time compu-

tations. Paper [10] describes using an ARM microcontroller for optimization of 

industrial processes, where metamodels, evolutionary algorithms and artificial 

neural networks are used. Implementing the RTFEM to such microcontroller 

applications is just one step further, as the FEM is widely used in solving inverse 

problems like optimization or identification [11-13]. 

The following paper describes an algorithm for reducing computational time of 

FEM calculations conducted on ARM microcontrollers by replacing every element 

of floating-point data with integer data and introducing scaling. All the tests were 

performed on the ARM-CortexM4F based STM32F429ZIT6 microcontroller. 

2. Code optimization of the RTFEM algorithm 

for the ARM microcontroller 

In computer science, code optimization is the process of modifying the code 

to make the software work more efficiently or use fewer resources. The program 

can be optimized so that it executes faster, or operates with less memory storage 

or other resources. 
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Taking into account the low computational power of microcontrollers, the algo-

rithms implemented on them should be optimized in respect of execution time 

related to the amount of floating point operations that need to be performed. 

Application of the FEM is based on solving matrix equations. When consider-

ing mechanical analysis the equation is [14]: 

 ��+ ��� +��� = �, (1) 

where K is the stiffness matrix, C is the damping matrix, M is the mass matrix, q is 

the vector of unknown displacements, ��  is the velocity vector, ��  is the acceleration 

vector and F is the load vector. 

Algorithms for solving equation (1) (for example the Central Difference 

Method, Newmark Method or Wilson Method) consist of solving this equation for 

every discrete moment of time, usually by reducing it to a simple matrix equation 

to be solved: 

 �	 = 
, (2) 

where x is unknown. 

When considering a static strength analysis of a structure using FEM, the equa-

tion (1)  is from the beginning in the form (2): 

 �� = �. (3) 

The first optimization procedure is the choice of a method to solve the FEM 

equation. The matrix equation (2) can be numerically solved by computing and 

applying the inverse matrix  or by using other algorithms [15]. Since inversing 

matrices numerically is very computationally expensive and not stable, there is 

a choice between using direct and iterative methods [16]. To choose a good method 

for a specific job, one must consider the required speed and accuracy that are 

necessary. If great precision is required or the matrix is small (up to about a few 

hundred rows, depends of the matrix density) the direct methods are a much better 

choice than the iterative methods. For big matrices, iterative methods are usually 

faster but less precise than direct methods [17]. Iterative methods are especially 

suitable for sparse matrices [18], that usually occur in the FEM. The Gauss Elimi-

nation Method, Cholesky decomposition, LDLT decomposition are examples of 

direct methods. The Conjugate Gradient Method is, on the other hand, the most 

popular (in FEM applications) iterative method that applies to equations like (2), 

where the matrix A is symmetrical [19]. 

The second optimization procedure for FEM simulations on microcontrollers is 

the choice of data type format in which constants and variables in the algorithm are 

represented. Typically, microcontrollers have to offer two formats for floating-point 

variables and constants: single precision (float) and double precision (double). 

The author advises using the single precision format in typical applications where 

it is possible (the range of values is not exceeded and the precision is sufficient) 

because arithmetical operations on single precision values are faster. Another idea 
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to speed-up the algorithm is to represent every floating-point variable and constant 

with an integer data type format. It is possible if proper scaling is used. 

As an example, the Newmark algorithm is taken into consideration [14]. 

The first step of representing all values in the integer format is to choose such 

a system of consistent units that will provide as much input and output data as 

possible with a positive order of magnitude. If not all input data are integer 

constants in the chosen consistent units system, they can be scaled. 

When scaling input data, one must keep in mind that later when calculating 

stiffness and mass matrices from the scaled data, both matrices must be in the same 

scale. If they are, the calculated damping matrix (usually from stiffness matrix and 

mass matrix using the Rayleigh model) and effective stiffness matrix are also in the 

same scale. If the stiffness, mass and damping matrices are scaled by k1 (in conse-

quence the effective stiffness matrix is in scale k1) and the load vector (in every 

time moment) is scaled by multiplying its elements by k2, the initial conditions 

have to be scaled by quotient k2/k1. Only then the results of displacements, veloci-

ties and accelerations will be valid and also obtained in scale k2/k1. When introduc-

ing the abovementioned scales to the algorithm, one know that when performing 

a dividing operation on values represented by the integer format, the result of the 

operation is the quotient, and the remainder is lost, so the result is rounded always 

down. Taking that into consideration, k2/k1 proportion should be chosen carefully 

so the results would not be too inaccurate. The order of magnitude of the obtained 

scaled results from 3 to 8 usually works. 

The final remark on adjusting the Newmark algorithm to integer operations is 

that the notation of equations for computing an effective stiffness matrix, effective 

load vector, acceleration vector and velocity vector should be changed to a form 

where there is only multiplication and division by integer values, as the integration 

parameters α and δ are usually smaller then 1. For example, if integration step dt is 

10 ms, parameter α is 0.25 and parameter δ is 0.5, the formula to calculate every 

element of the effective stiffness matrix: 

������
= ��� +

1

� ∙ ��
��� +

�

� ∙ �
��� (4) 

should be changed to: 

������
= ��� +

���

25
+
���

5
 (5) 

with parameter k1 just high enough not to lose too much accuracy while rounding 

down when performing integer divisions in equation (5). 

3. Numerical examples 

Two numerical examples of FEM computations were performed on ST-DISCO-

VERY evaluation board, equipped with the STM32F429ZIT6 microcontroller. 
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This device integrates ARM-CortexM4F based core (ARMv7M architecture), pro- 

gram and data memories, and all the necessary peripherals which make an autonomic 

computer system [20]. The algorithmswere implemented with use of C# .NET MF. 

The CPU core was clocked at 180  MHz, which is the maximal frequency for 

a ST32F429ZIT6 microcontroller. 

Both FEM examples concern comparison between accuracy and computation 

time for different variables and constants data types representations. Both FEM 

examples consider a steel bridge (modeled by a steel truss: Young Modulus 

E = 210,000 MPa, cross section area A = 2000 mm
2
, density ρ = 0.0078 g/mm

3
). 

The selected system of consistent units in the FEM algorithms is: g, mm, ms, N, MPa. 

A vehicle (with the mass of 80,000,000 g, represented by Fveh) is crossing 

the bridge (from point A to D) with the velocity of 15 mm/ms (Fig. 1). The load 

is distributed on two nodes (between which the vehicle is located, the forces 

are proportional to the distance from the nodes to the vehicle) or on one node if 

the vehicle’s center of gravity is directly above it.  The task is to find deformation 

of point B of the bridge. 

Three variants of the algorithm are considered, where every floating point value 

is represented by: double-precision floating point format (double), single-precision 

floating point format (float) and integer format (int, with scaling applied). The 

obtained results from the algorithm were compared with results from commercial 

CAE program - Abaqus CAE 6.13-1 (implicit integration scheme was chosen, 

with identical time step as in the microcontroller - 20 ms). 

Execution times for every variant of the algorithm are presented in Table 1 and 

the compared results in Figure 2. 

 

 

Fig. 1. Numerical example 1 

Table 1 

Execution time of FEM algorithm with different data types representation 

data type format pre-calculations time loop-calculations time 

double 0.067 s 0.868 s 

float 0.063 s 0.822 s 

int 0.086 s 0.548 s 
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Fig. 2. Numerical example 1 results for different 

By changing double

time has been reduced by 5

about 0.1%). By representing every floating

integer format, the improvement of 28

decrease of accuracy (the average difference between results in 

and Abaqus results was 0.40

0.69 mm, the relative difference between 

while the absolute difference never exceeded 1.5

architecture is only equipped in single

supports double format. The user has no influence on how the computations are 

performed. 

The second example concerns the same truss as above, but with a different load 

case. A Heaviside load (800 kN, 

direction). The results of vertical deformation of point B are presented in 

 

By changing the variables and constants representation from a double

format to an integer format, execution time was red

improvement has been obtained while maintaining high accuracy (as shown in

Figure 4, the relative difference between 

The obtained results were also compared with the same finite element 

solution from Abaqus software 

step 10 ms. As one can see in 

differ a little from each other, especially at the end of the simulation. The author 

suspects that it is related to numerical damping implemented in Abaqus. In Abaqus 
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Fig. 2. Numerical example 1 results for different variants of the algorithm

By changing double-precision to a single-precision format, the  computation 

time has been reduced by 5.7% with results nearly identical (the relative difference 

representing every floating-point variable and constant with

integer format, the improvement of 28.3% has been obtained with only a little

decrease of accuracy (the average difference between results in float/double

and Abaqus results was 0.40 mm and between int variant and Abaqus results was 

mm, the relative difference between float/double and int variant about 6% 

while the absolute difference never exceeded 1.5  mm). The ARM-

architecture is only equipped in single-precision FPU and 64-bit register bank

supports double format. The user has no influence on how the computations are 

The second example concerns the same truss as above, but with a different load 

case. A Heaviside load (800 kN, Fig. 3) has been applied to point B 

direction). The results of vertical deformation of point B are presented in 

Fig. 3. Heaviside load 

By changing the variables and constants representation from a double

format to an integer format, execution time was reduced from 2.14 to 1.54 s. 28

improvement has been obtained while maintaining high accuracy (as shown in

4, the relative difference between double and int variant was about 5%).

The obtained results were also compared with the same finite element 

solution from Abaqus software - implicit scheme was utilized, with the same time 

ms. As one can see in Figure 4, the results from Abaqus and microcontroller

differ a little from each other, especially at the end of the simulation. The author 

suspects that it is related to numerical damping implemented in Abaqus. In Abaqus 
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the operators used for implicit direct time integration introduce some artificial 

damping in addition to Rayleigh damping.

 

Fig. 4. Numerical example 2 results for differen

4. Conclusions 

It is crucial to optimize the FEM algorithms considering computation time,

because in real time applications every millisecond matters. The presented idea

of changing the representation of floating

format gives very good results if the scaling is done correctly. This can be impl

mented to describe HIL simulations using RTFEM.

The paper proves that FEM can be successfully implemented to algorithms

executed on ARM microcontrol

the paper, the execution time is significantly shortened, while maintaining high

accuracy. 

The presented examples may be simple, however the computations are pe

formed on a microcontroller, a device that has b

tasks (control, communication, data processing). However new technologies, dra

ing along a significant increase of computational possibilities, open a wide range of 

new possibilities for applications of microcontrollers.
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