
Journal of Applied Mathematics and Computational Mechanics 2017, 16(1), 109-116

www.amcm.pcz.pl p-ISSN 2299-9965

 DOI: 10.17512/jamcm.2017.1.10 e-ISSN 2353-0588

REAL-TIME FINITE ELEMENT SIMULATIONS

ON AN ARM MICROCONTROLLER

Waldemar Mucha

Institute of Computational Mechanics and Engineering, Silesian University of Technology
Gliwice, Poland

waldemar.mucha@polsl.pl

Received: 24 November 2016; accepted: 15 March 2017

Abstract. Real time processing enables online reactions to dynamic environment changes.

The author focuses on possibilities of implementing the Finite Element Method (FEM) to

real time algorithms on microcontrollers. The paper presents the current state of the Real

Time Finite Element Method (RTFEM) and describes results obtained by the author.

The RTFEM for microcontrollers (with examples of use cases) is presented and results

of the computations for the chosen platform are given. The results consider optimization of

RTFEM computational algorithms for a microcontroller taking into account their execution

time. All the tests were performed on the ARM-CortexM4F based STM32F429ZIT6

microcontroller. The obtained results were compared, discussed and presented in the paper.

MSC 2010: 65N30

Keywords: finite element method, real time, embedded systems, microcontroller

1. Introduction

The real time processing and analysis of signals, implemented on microcontrol-

lers has been present in everyday life for years. The algorithms behind them are as

simple as possible because of their low computational performance. The real time

processing enables online reactions to dynamic environment changes. Author

focuses on the possibilities of implementing the Finite Element Method (FEM)

to real time algorithms on microcontrollers.

The following paper focuses on implementing Real Time Finite Element

Method (RTFEM) computational algorithms on ARM microcontrollers by adjust-

ing the algorithms to a specific structure and requirements of ARM architectures.

Real time computations and processing of data using microcontrollers is nowa-

days widely implemented in many areas of applications. Taking into account

the architecture and low computational performance of microcontrollers, the algo-

rithms behind them are as simple as possible. Real time algorithms enable immedi-

ate reactions to dynamic changes of the environment. The author of the paper

W. Mucha 110

focuses on possibilities of implementing real time algorithms on microcontrollers

with the Finite Element Method (FEM). Real time means a previously specified

time interval in which the computations must be performed so the results would be

available. The number of floating-point operations that need to be performed

directly depends on the number of degrees of freedom of the model. The computa-

tional power of microcontrollers and embedded platforms is growing rapidly every

year, opening up bigger and bigger possibilities for algorithms where a large num-

ber of floating point operations has to be performed.

In the literature, only a few examples can be found of applications of the Real

Time Finite Element Method (RTFEM). The greatest problem in the RTFEM is

the conflict between the accuracy of the results and the execution time of the algo-

rithm. Applications found in the literature involve either RTFEM models where

results are just very roughly estimated or metamodels based on previous FEM

calculations. Examples of the applied RTFEM found in the literature consider

surgery applications (simulations of cuts [1], plastic surgery [2], suturing [3] and

other procedures), thermal simulations [4], recovering the force and location in

an impact event [5], part inspection in manufacturing [6] and controlling elastic

soft robots [7].

The purpose of implementing RTFEM algorithms to microcontrollers can be

performing Hardware-in-the-loop (HIL) simulations. An example of applying

RTFEM in HIL described in [8] is to use a materials testing machine controlled

by a microcontroller. A physical part of the tested mechanical system is mounted

in a dynamic materials testing machine, while the rest of the system is modelled

using the FEM. In order to control the machine in a closed loop, the microcontrol-

ler has to perform dynamic FEM computations in real time. The algorithm is

improved in [9] where mode superposition is used to speed up the real time compu-

tations. Paper [10] describes using an ARM microcontroller for optimization of

industrial processes, where metamodels, evolutionary algorithms and artificial

neural networks are used. Implementing the RTFEM to such microcontroller

applications is just one step further, as the FEM is widely used in solving inverse

problems like optimization or identification [11-13].

The following paper describes an algorithm for reducing computational time of

FEM calculations conducted on ARM microcontrollers by replacing every element

of floating-point data with integer data and introducing scaling. All the tests were

performed on the ARM-CortexM4F based STM32F429ZIT6 microcontroller.

2. Code optimization of the RTFEM algorithm

for the ARM microcontroller

In computer science, code optimization is the process of modifying the code

to make the software work more efficiently or use fewer resources. The program

can be optimized so that it executes faster, or operates with less memory storage

or other resources.

Real-time finite element simulations on an ARM microcontroller 111

Taking into account the low computational power of microcontrollers, the algo-

rithms implemented on them should be optimized in respect of execution time

related to the amount of floating point operations that need to be performed.

Application of the FEM is based on solving matrix equations. When consider-

ing mechanical analysis the equation is [14]:

 ��+ ��� +��� = �, (1)

where K is the stiffness matrix, C is the damping matrix, M is the mass matrix, q is

the vector of unknown displacements, �� is the velocity vector, �� is the acceleration

vector and F is the load vector.

Algorithms for solving equation (1) (for example the Central Difference

Method, Newmark Method or Wilson Method) consist of solving this equation for

every discrete moment of time, usually by reducing it to a simple matrix equation

to be solved:

 �	 =
, (2)

where x is unknown.

When considering a static strength analysis of a structure using FEM, the equa-

tion (1) is from the beginning in the form (2):

 �� = �. (3)

The first optimization procedure is the choice of a method to solve the FEM

equation. The matrix equation (2) can be numerically solved by computing and

applying the inverse matrix or by using other algorithms [15]. Since inversing

matrices numerically is very computationally expensive and not stable, there is

a choice between using direct and iterative methods [16]. To choose a good method

for a specific job, one must consider the required speed and accuracy that are

necessary. If great precision is required or the matrix is small (up to about a few

hundred rows, depends of the matrix density) the direct methods are a much better

choice than the iterative methods. For big matrices, iterative methods are usually

faster but less precise than direct methods [17]. Iterative methods are especially

suitable for sparse matrices [18], that usually occur in the FEM. The Gauss Elimi-

nation Method, Cholesky decomposition, LDLT decomposition are examples of

direct methods. The Conjugate Gradient Method is, on the other hand, the most

popular (in FEM applications) iterative method that applies to equations like (2),

where the matrix A is symmetrical [19].

The second optimization procedure for FEM simulations on microcontrollers is

the choice of data type format in which constants and variables in the algorithm are

represented. Typically, microcontrollers have to offer two formats for floating-point

variables and constants: single precision (float) and double precision (double).

The author advises using the single precision format in typical applications where

it is possible (the range of values is not exceeded and the precision is sufficient)

because arithmetical operations on single precision values are faster. Another idea

W. Mucha 112

to speed-up the algorithm is to represent every floating-point variable and constant

with an integer data type format. It is possible if proper scaling is used.

As an example, the Newmark algorithm is taken into consideration [14].

The first step of representing all values in the integer format is to choose such

a system of consistent units that will provide as much input and output data as

possible with a positive order of magnitude. If not all input data are integer

constants in the chosen consistent units system, they can be scaled.

When scaling input data, one must keep in mind that later when calculating

stiffness and mass matrices from the scaled data, both matrices must be in the same

scale. If they are, the calculated damping matrix (usually from stiffness matrix and

mass matrix using the Rayleigh model) and effective stiffness matrix are also in the

same scale. If the stiffness, mass and damping matrices are scaled by k1 (in conse-

quence the effective stiffness matrix is in scale k1) and the load vector (in every

time moment) is scaled by multiplying its elements by k2, the initial conditions

have to be scaled by quotient k2/k1. Only then the results of displacements, veloci-

ties and accelerations will be valid and also obtained in scale k2/k1. When introduc-

ing the abovementioned scales to the algorithm, one know that when performing

a dividing operation on values represented by the integer format, the result of the

operation is the quotient, and the remainder is lost, so the result is rounded always

down. Taking that into consideration, k2/k1 proportion should be chosen carefully

so the results would not be too inaccurate. The order of magnitude of the obtained

scaled results from 3 to 8 usually works.

The final remark on adjusting the Newmark algorithm to integer operations is

that the notation of equations for computing an effective stiffness matrix, effective

load vector, acceleration vector and velocity vector should be changed to a form

where there is only multiplication and division by integer values, as the integration

parameters α and δ are usually smaller then 1. For example, if integration step dt is

10 ms, parameter α is 0.25 and parameter δ is 0.5, the formula to calculate every

element of the effective stiffness matrix:

������
= ��� +

1

� ∙ ��
��� +

�

� ∙ �
��� (4)

should be changed to:

������
= ��� +

���

25
+
���

5
 (5)

with parameter k1 just high enough not to lose too much accuracy while rounding

down when performing integer divisions in equation (5).

3. Numerical examples

Two numerical examples of FEM computations were performed on ST-DISCO-

VERY evaluation board, equipped with the STM32F429ZIT6 microcontroller.

Real-time finite element simulations on an ARM microcontroller 113

This device integrates ARM-CortexM4F based core (ARMv7M architecture), pro-

gram and data memories, and all the necessary peripherals which make an autonomic

computer system [20]. The algorithmswere implemented with use of C# .NET MF.

The CPU core was clocked at 180 MHz, which is the maximal frequency for

a ST32F429ZIT6 microcontroller.

Both FEM examples concern comparison between accuracy and computation

time for different variables and constants data types representations. Both FEM

examples consider a steel bridge (modeled by a steel truss: Young Modulus

E = 210,000 MPa, cross section area A = 2000 mm
2
, density ρ = 0.0078 g/mm

3
).

The selected system of consistent units in the FEM algorithms is: g, mm, ms, N, MPa.

A vehicle (with the mass of 80,000,000 g, represented by Fveh) is crossing

the bridge (from point A to D) with the velocity of 15 mm/ms (Fig. 1). The load

is distributed on two nodes (between which the vehicle is located, the forces

are proportional to the distance from the nodes to the vehicle) or on one node if

the vehicle’s center of gravity is directly above it. The task is to find deformation

of point B of the bridge.

Three variants of the algorithm are considered, where every floating point value

is represented by: double-precision floating point format (double), single-precision

floating point format (float) and integer format (int, with scaling applied). The

obtained results from the algorithm were compared with results from commercial

CAE program - Abaqus CAE 6.13-1 (implicit integration scheme was chosen,

with identical time step as in the microcontroller - 20 ms).

Execution times for every variant of the algorithm are presented in Table 1 and

the compared results in Figure 2.

Fig. 1. Numerical example 1

Table 1

Execution time of FEM algorithm with different data types representation

data type format pre-calculations time loop-calculations time

double 0.067 s 0.868 s

float 0.063 s 0.822 s

int 0.086 s 0.548 s

114

Fig. 2. Numerical example 1 results for different

By changing double

time has been reduced by 5

about 0.1%). By representing every floating

integer format, the improvement of 28

decrease of accuracy (the average difference between results in

and Abaqus results was 0.40

0.69 mm, the relative difference between

while the absolute difference never exceeded 1.5

architecture is only equipped in single

supports double format. The user has no influence on how the computations are

performed.

The second example concerns the same truss as above, but with a different load

case. A Heaviside load (800 kN,

direction). The results of vertical deformation of point B are presented in

By changing the variables and constants representation from a double

format to an integer format, execution time was red

improvement has been obtained while maintaining high accuracy (as shown in

Figure 4, the relative difference between

The obtained results were also compared with the same finite element

solution from Abaqus software

step 10 ms. As one can see in

differ a little from each other, especially at the end of the simulation. The author

suspects that it is related to numerical damping implemented in Abaqus. In Abaqus

W. Mucha

Fig. 2. Numerical example 1 results for different variants of the algorithm

By changing double-precision to a single-precision format, the computation

time has been reduced by 5.7% with results nearly identical (the relative difference

representing every floating-point variable and constant with

integer format, the improvement of 28.3% has been obtained with only a little

decrease of accuracy (the average difference between results in float/double

and Abaqus results was 0.40 mm and between int variant and Abaqus results was

mm, the relative difference between float/double and int variant about 6%

while the absolute difference never exceeded 1.5 mm). The ARM-

architecture is only equipped in single-precision FPU and 64-bit register bank

supports double format. The user has no influence on how the computations are

The second example concerns the same truss as above, but with a different load

case. A Heaviside load (800 kN, Fig. 3) has been applied to point B

direction). The results of vertical deformation of point B are presented in

Fig. 3. Heaviside load

By changing the variables and constants representation from a double

format to an integer format, execution time was reduced from 2.14 to 1.54 s. 28

improvement has been obtained while maintaining high accuracy (as shown in

4, the relative difference between double and int variant was about 5%).

The obtained results were also compared with the same finite element

solution from Abaqus software - implicit scheme was utilized, with the same time

ms. As one can see in Figure 4, the results from Abaqus and microcontroller

differ a little from each other, especially at the end of the simulation. The author

suspects that it is related to numerical damping implemented in Abaqus. In Abaqus

of the algorithm

precision format, the computation

7% with results nearly identical (the relative difference

point variable and constant with

3% has been obtained with only a little

float/double variant

variant and Abaqus results was

variant about 6%

-CortexM4F

bit register bank

supports double format. The user has no influence on how the computations are

The second example concerns the same truss as above, but with a different load

 (in vertical

direction). The results of vertical deformation of point B are presented in Figure 4.

By changing the variables and constants representation from a double-precision

uced from 2.14 to 1.54 s. 28.3%

improvement has been obtained while maintaining high accuracy (as shown in

variant was about 5%).

The obtained results were also compared with the same finite element model

implicit scheme was utilized, with the same time

4, the results from Abaqus and microcontroller

differ a little from each other, especially at the end of the simulation. The author

suspects that it is related to numerical damping implemented in Abaqus. In Abaqus

Real-time finite element simulations on an ARM

the operators used for implicit direct time integration introduce some artificial

damping in addition to Rayleigh damping.

Fig. 4. Numerical example 2 results for differen

4. Conclusions

It is crucial to optimize the FEM algorithms considering computation time,

because in real time applications every millisecond matters. The presented idea

of changing the representation of floating

format gives very good results if the scaling is done correctly. This can be impl

mented to describe HIL simulations using RTFEM.

The paper proves that FEM can be successfully implemented to algorithms

executed on ARM microcontrol

the paper, the execution time is significantly shortened, while maintaining high

accuracy.

The presented examples may be simple, however the computations are pe

formed on a microcontroller, a device that has b

tasks (control, communication, data processing). However new technologies, dra

ing along a significant increase of computational possibilities, open a wide range of

new possibilities for applications of microcontrollers.

References

[1] Vigneron L.M., Verly J.G., Warfield S.K., Modelling Surgical Cuts, Retractions, and Resections

via Extended Finite Element Method, MICCAI, 2004, LNCS 3217, Springer

Heidelberg 2004, 311-318.

[2] Lapeer R.J., Gasson P.D., Karri V., Si
through hyperelastic finite element models to real

Molecular Biology 2010, 103, 208

[3] Berkley J., Turkiyyah G., Berg D., Ganter M., Weghorst S

for surgery simulation: An

and Computer Graphics 2004, 10(3), 314

time finite element simulations on an ARM microcontroller

the operators used for implicit direct time integration introduce some artificial

damping in addition to Rayleigh damping.

Fig. 4. Numerical example 2 results for different variants of the algorithm

It is crucial to optimize the FEM algorithms considering computation time,

because in real time applications every millisecond matters. The presented idea

of changing the representation of floating-point variables and constants to integer

format gives very good results if the scaling is done correctly. This can be impl

mented to describe HIL simulations using RTFEM.

The paper proves that FEM can be successfully implemented to algorithms

executed on ARM microcontrollers. By introducing improvements described in

the paper, the execution time is significantly shortened, while maintaining high

The presented examples may be simple, however the computations are pe

formed on a microcontroller, a device that has been typically utilized for simpler

tasks (control, communication, data processing). However new technologies, dra

ing along a significant increase of computational possibilities, open a wide range of

new possibilities for applications of microcontrollers.

Vigneron L.M., Verly J.G., Warfield S.K., Modelling Surgical Cuts, Retractions, and Resections

via Extended Finite Element Method, MICCAI, 2004, LNCS 3217, Springer-Verlag

318.

Lapeer R.J., Gasson P.D., Karri V., Simulating plastic surgery: From human skin tensile tests,

through hyperelastic finite element models to real-time haptics, Progress in Biophysics and

Molecular Biology 2010, 103, 208-216.

Berkley J., Turkiyyah G., Berg D., Ganter M., Weghorst S., Real-time finite element modeling

: An application to virtual suturing, IEEE Transactions on

raphics 2004, 10(3), 314-325.

115

the operators used for implicit direct time integration introduce some artificial

t variants of the algorithm

It is crucial to optimize the FEM algorithms considering computation time,

because in real time applications every millisecond matters. The presented idea

and constants to integer

format gives very good results if the scaling is done correctly. This can be imple-

The paper proves that FEM can be successfully implemented to algorithms

lers. By introducing improvements described in

the paper, the execution time is significantly shortened, while maintaining high

The presented examples may be simple, however the computations are per-

een typically utilized for simpler

tasks (control, communication, data processing). However new technologies, draw-

ing along a significant increase of computational possibilities, open a wide range of

Vigneron L.M., Verly J.G., Warfield S.K., Modelling Surgical Cuts, Retractions, and Resections

Verlag, Berlin,

mulating plastic surgery: From human skin tensile tests,

time haptics, Progress in Biophysics and

finite element modeling

, IEEE Transactions on Visualization

W. Mucha 116

[4] Isobe Y., Watanabe H., Yamazaki N., XiaoWei L., Kobayashi Y., Miyashita T., Hashizume M.,
Fujie M.G., Real-Time Temperature Control System Based on the Finite Element Method
for Liver Radiofrequency Ablation: Effect of the Time Interval on Control, Engineering
in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE
2013, 392-396.

[5] Shin E., Real-time recovery of impact force based on finite element analysis, Computers
and Structures 2000, 76, 621-635.

[6] Jaramillo A.E., Boulanger P., Prieto F., On-line 3-D system for the inspection of deformable
parts, Int. J. Adv. Manuf. Technol. 2011, 57, 1053-1063.

[7] Duriez C., Control of elastic soft robots based on real-time finite element method, Robotics
and Automation (ICRA) 2013, 3982-3987.

[8] Mucha W., Real-time hybrid simulation using materials testing machine and FEM, Advances
in mechanics: theoretical, computational and interdisciplinary issues, Proceedings of the 3rd
Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods
in Mechanics (CMM) - PCM-CMM-2015, Gdańsk, Poland, 8-11 September 2015, CRC
Press/Balkema, 2016, 419-422.

[9] Mucha W., Kuś W., Application of mode superposition to hybrid simulation using Real Time
Finite Element Method, Mechanika, Kauno Technologijos Universitetas, accepted, 2016.

[10] Mrozek A., Kuś W., Sztangret Ł., Real-time evolutionary optimization of metallurgical pre-
cesses using ARM microcontroller, Computer Methods in Material Science (CMMS) 2016,
16(1), 20-26

[11] Kuś W., Burczyński T., Bioinspired algorithms in multiscale optimization, Advanced Structured
Materials 2010, 1, 186-192.

[12] Kokot G., Orantek P., The topology optimization using evolutionary algorithms, Solid Mechan-
ics and its Applications 2004, 117, 173-186.

[13] Ogierman W., Kokot G., A study on fiber orientation influence on the mechanical response of
a short fiber composite structure, Acta Mechanica 2016, 227(1), 173-183.

[14] Zienkiewicz O.C., Taylor R.L., The Finite Element Method, Volume 1: The Basis, Fifth Edition,
Butterworth-Heinemann, 2000.

[15] Majchrzak E., Mochnacki B., Metody numeryczne. Podstawy teoretyczne, aspekty praktyczne
i algorytmy, Wydawnictwo Politechniki Śląskiej, Gliwice 2004.

[16] Chandrupatla T.R., Belegundu A.D., Introduction to Finite Elements In Engineering, Fourth
Edition, Pearson, Upper Siddle River, 2012.

[17] Golub G.H., Van Loan C.F., Matrix Computations, Third Edition, The Johns Hopkins Univer-
sity Press, 1996.

[18] Saad Y., Iterative Methods for Sparse Linear Systems, Second Edition, Society for Industrial
and Applied Mathematics, 2003.

[19] Press W.H., Teukolsky S., Vetterling W., Flannery B., Numerical Recepies, The Art of Scien-
tific Computing, Third Edition, Cambridge University Press, 2007.

[20] Yiu J., The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Third Edition,
Elsevier, 2014.

