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Abstract. This article proposes a method of study the M/E/2/m and M/Ey/2/o queueing
systems with a hysteretic strategy of random dropping of customers. Recurrence relations
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1. Introduction

For investigating queueing systems with Erlang distributions and, in particular,
the M/E/n/o system, the fictitious phase method developed by A.K. Erlang [1]
is used. For the Erlang distribution of the sth order of service time, it is supposed
that each customer sequentially passes through s phases of service whose durations
are distributed by exponential laws with parameters u,, 4, ,..., i, respectively.

Accounting for phases requires the fixation of the corresponding states and
leads to the increase in the cumbersomeness of the description of a queuing system
with phase-type distributions. The direct solution of a system of equations for
steady-state probabilities of states can result in being impossible in view of a large
size of the coefficient matrix of a system. The algorithmic approach is most
expedient since it presumes the obtaining of a solution to systems of equations
in the form of recursive formulas or in the form of matrix recurrence relations and
algorithms [2-10]. The method proposed in [7-10] is based on the use of direct
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recurrence relations following immediately from system equations for steady-state
probabilities. It does not contain iterations and it does not presume preliminary
transformations of the system of equations being solved.

The objective of this article is the construction of recurrent algorithms with the
help of the fictitious phase method to compute the steady-state distribution of the
number of customers in the M/E/2/m and M/E/2/0 queuing system, where s> 2,
with hysteretic strategy of the random dropping of customers. The random drop-
ping of customers is used in queuing systems with a view for preventing overloads
when each arriving customer can be discarded with a definite probability depend-
ent on the queue length at the moment of arrival of a customer even if the buffer
is not completely filled [11-13].

2. The M/E/2/m system with hysteretic strategy of random dropping
of customers

Let us consider the M/E/2/m system, where s>2 and m is the maximum
number of customers who can simultaneously be in the queue. The input flow
of customers is Poisson, i.e., the time intervals between the moments of arrival
of customers adjacent in time are independent random variables exponentially
distributed with the parameter A. The service time of each customer is distributed
according to the generalized Erlang law, of the order s, so the service time is the
sum of s independent random variables exponentially distributed with parameters
Hists. .., 1, respectively.

We consider the random dropping of customers that is implemented according
to the following rule: if, at the moment of arrival of a customer, the number
of customers in the system is equal to £ (without making allowance for the arrived
one), then the customer is accepted for service with probability B, (0< g, <1,
B,..» =0) and is refused (discarded) with probability 1 - 5,.

We consider a hysteretic strategy of the random dropping of customers with two
thresholds 4, and A, (3<h, <h, <m+1) and with two operating modes, namely,
basic and dropping mode. Assume that S, =1 when 0<k <h, -1 for the basic
mode and 0< B, <1 when s, +1<k <m+1 for the dropping mode. The dropping
mode continues from the moment when the number of customers in the system
achieves the value of A, up to the moment when the number of customers is re-
duced to the value of 4. If, at the moment of arrival of a customer, the condition

h, <k < h, is satisfied, then the mode is not changed. The rate of the simplest flow
of customers accepted for service in the dropping mode is equal to A4,=Ap,.
In a partial case of the hysteretic strategy, assuming that 8, = 8 (0< f<1) for all
k in the dropping mode. If m =, then f, = B, k=h> h,, where 0 < B<l.
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The M/EJ/2/m system with the hysteretic strategy of the random dropping of
customers we denote by M(h,h)/E/2/m. We introduce the following designations
for system states in the basic mode: s, signifies that customers are absent in the
system; s, signifies that k customers are present in the system (I<k <h,—1),
and that two customers are at the ith phase of service and at the jth one
(I<i<s,i<j<s) respectively. The states s,,; (I<j<s) correspond to one
working channel and jth phase of service. We denote the steady-state probabilities
of staying the system at the states s, and s, by Po and p,;, respectively.
0 ;) be the steady-

state probability of staying the system at the state §,,, (b +1<k<<m+2,

i)
be the state similar to s, ,, in the dropping mode and g,

Let §;
1<i<s, i< j<s). Weassume that py ;) = pyq,) (1<) <)

To determine steady-state probabilities, we obtain the system of homogeneous
algebraic equations with normalization condition

s s m+2 s
PO+ZPI<0/)+ZZZPM>+ > qukm Q)
k=2 i=1 j=i k=h1+1i=1 j=i

Introducing the notation

A A
a=—, 1<i<s; nlzﬁ, 1<i<s; ak(l)z—", hi+1<k<m+];

1

/Llf /Lll #1
1~’k<u>:pk(") I<k<h -1, 1<i<s,i<j<s,
0
gk(i/):qZU)ﬂ h1+1<k<m+291£l<s,l<JSS,
0

]3,{(,5,) =D 25k<h -1, (jk(m) =q, +1<k<m+2, 1<i<s,

and using the system of algebraic equations, we find:
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Recurrence relations (2) allow one to compute p;, and g, as linear func-
tions of the unknown parameters p,;(2<k<h,—1, 1<i<s) and gq,, (h;+1<
<k <m+2, 1<i<ys) in the following order:
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To determine unknown parameters p,, (2<k<h,-1, 1<i<s) and ¢,
(hy+1<k<m+2, 1<i<s), we use the system that consists of s(h, —h, +m)
equations that have not been involved in obtaining recurrence relations (2),
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We use normalization condition (1) and determine the steady-state probabilities
by the formulas

-1

s S m+2 s
1+ZPI<01>+ZZZPk<u>+ 2 qukw ;
k=2 i=1 j=i k=h+1 i=1 j=i
Dy =DoDy» 1<k<m+2; p = Zpl(o/)a Di _Zzpk(u)’ <k<h;
i=l j=i
B =2 (Bugy + G I +1sk<h =1 B, =qukw>’ h<k<m+2.
i=l j=i i=l j=i

Here p, is steady-state probability of presence k£ customers in the system.

We calculate the steady-state characteristics - the average number of customers

in the system E(C), the average queue length E(Q), average waiting time E(W)
and service probability P, - by the formulas

m+2 m+2

EC)=Y kp. EQ)=Y (k-2p,. EW)=22)
k=1 k=3

AP
2(1- - 5 -
Psv ,U( (1= py) Pl)’ — (Z 1 J _

sV
A i=1 M

3. The system without restrictions on the queue length

For the M(hy,h,)/E/2/0 system, any constraint on the queue length is absent
and, for the existence of stationary distribution of the number of customers in the
system, the condition A8 <27 must be satisfied. Determining approximate values
of steady-state probabilities p, is reduced to the use of recurrence relations (2) for
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large values of m. We choose the number N =m +2 so large that one of the condi-
tions (or each of these conditions) specifying the accuracy of determining steady-
state probabilities is fulfilled. These conditions can be specified, for example,
in the form

E(C) ) —E(C) vy < &5 E(Q) ) —E(Q) -1y < &- 3)

Here ¢, and &, are positive numbers specifying the required accuracy of computa-
tions; E(C)y, and E(Q)y, are approximate values of steady-state characteristics

E(C) and E(Q), computed using steady-state probabilities p, y, (0 <k < N);
Di(ny 1S an approximate value of a steady-state probability p,, which is obtained

as a result of truncation of an infinite system of equations for steady-state
probabilities.

4. Numerical examples

Let us consider examples of determining steady-state characteristics of
the M(h,,h,)/Es/2/0 queuing system for different values of the thresholds /, and
hy: 1)hy=6,h,=8 2)h,=6,h,=10; 3)h,=6,h,=12. Let A=1; u, =2.5,
1<i<5; the probabilities f, for the dropping mode be set according to the rule:
B, =pF=0.8 for k>h, +1. For comparison, we calculate the stationary character-

istics of the M/Es/2/43 system, which does not apply the random dropping of
customers.

The values of the steady-state probabilities P and stationary characteristics of
the M(h,hy)/Es/2/0 system for cases 1-3, found using the recurrence relations
obtained in this paper, as well as of the M/Es/2/43 system, are presented in Tables 1
and 2. In order to verify the obtained values, Table 2 contains the computing results
evaluated by the GPSS World simulation system [14] for the simulation time value
1=10".

In computing approximate values of steady-state probabilities p,, the value of N
was selected so large that conditions (3) were satisfied when & =107, The obtained
minimal values of N for cases 1-3 are equal to 45, 45 and 47 respectively.

Analyzing the results, presented in Table 2, we see that the control of the input
flow rate with the help of random dropping of customers makes it possible to
considerably reduce the average queue length with an insignificant decrease in the
system throughput. Thus, the decrease in the average queue length in the
M(h\,h)/Es/2/o system (the case of h,=6,h,=8) in comparison with the
MJEs/2/43 system amounts to 81.6%, with a decrease in the relative throughput by
5.3%. If the value of the threshold #, increases, leaving the same value of #, then
E(Q) and P, increase.
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Table 1
Stationary distribution of the number of customers in the systems
Values of the steady-state probabilities p,
¢ MJ/Es/2/43 Ai(lfll;hg?/}is/f/§0> Afz(lh:?l/ff{(())o’ Afz(lh;?)}/ffl/;
0 0.006270 0.030479 0.027564 0.025071
1 0.014577 0.070856 0.064078 0.058284
2 0.019569 0.095119 0.086020 0.078242
3 0.021658 0.105274 0.095203 0.086595
4 0.022351 0.108637 0.098247 0.089366
5 0.022544 0.109648 0.099131 0.090157
6 0.022589 0.107500 0.097400 0.088673
7 0.022597 0.101170 0.096390 0.088693
8 0.022598 0.080393 0.087893 0.083804
9 0.022598 0.058035 0.072205 0.075011
10 0.022598 0.040450 0.052594 0.063798
11 0.022598 0.028147 0.037520 0.050642
12 0.022598 0.019577 0.026111 0.036400
13 0.022598 0.013616 0.018162 0.025953
14 0.022598 0.009470 0.012632 0.018059
15 0.022598 0.006586 0.008785 0.012561
20 0.022598 0.001072 0.001430 0.002044
30 0.022598 0.000028 0.000038 0.000054
40 0.022598 7.517-107 1.003-10°° 1.434-10°
45 0.013559 8.236:10°® 1.099-10” 2.354-107
Table 2
Stationary characteristics of the systems
Values of the stationary characteristics
System Method
E(C) E(Q) E(W) P,
Recurrence 22.88257 20.90968 21.19709 0.98644
MIEs/2/43
GPSS World 22.896 20.923 21.212 0.986
M(hy.hy)/Es/2/o0, Recurrence 5.71082 3.84263 4.11376 0.93409
hy=6,h,=8 GPSS World 5717 3.848 4.118 0.935
M(hy,hy)/Es/2/0, Recurrence 6.18609 4.30530 4.57817 0.94040
hy=6.h,=10 | GPSS World 6.179 4.299 4.571 0.941
M(hy,hy)/Es/2/0, Recurrence 6.71627 4.82469 5.10125 0.94579
hy=6.h,=12 |  GPSS World 6.712 4.821 5.097 0.946
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5. Conclusions

Using the method of fictitious phases, an algorithm for calculating the station-
ary distribution of the number of customers in the M/Ey/2/m systems with hysteretic
strategy of the random dropping of customers, inclusive of the case m = w0, is con-

structed. The obtained recurrence relations are used for the direct computation of
the solutions of the algebraic system for the steady-state probabilities, which makes
it possible to reduce the amount of computations in comparison with the direct
or iterative classical methods. Using the obtained recurrence relations makes it

possible to reduce the number of solved equations from (s +1) (2 +s(hy—h,+ m)) /2
to s(hy, —hy +m).
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