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Abstract. The goal of the paper is to correlate real brain deflection with its numerical 

model as the 3D model of a fragment of the brain and suction pipe. The model is analyzed 

with the Finite Element Method with use of Ansys software. The brain tissue can undergo 

large strains, which is why it is described by a hyperelastic material. The Mooney-Rivlin 

material model is used for numerical analyzes. The inverse problem is solved with use 

of optimization Non-Linear Programming by Quadratic Lagrangian (NLPQL). 
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1. Introduction  

The brain is the most complex human organ and its exploration is still of inter-

est to many researchers in various fields of science. Nowadays, despite increasing 

safety rules, there is still a large number of deaths from brain injury. Therefore, 

an attempt to reflect the real behavior of the brain tissue using numerical analyzes, 

will allow the elimination unforeseen tissue damage. This is of great importance 

above all in dynamic analyzes during injures occurring at the car collisions, 

accidents and sports contacts. To simulate the real behavior of the brain tissue, 

it is necessary to choose the appropriate parameters of the hyperelastic material 

model.  

The brain tissue shows the ability to sustain large deformations similar to rubber 

materials. For this reason, hyperelastic material properties should be assigned but 

it is important to choose the right material model. Hyperelastic models behave 

nonlinearly and can be almost or completely incompressible. The most common 

hyperelastic material models used for brain tissue modelling are Arruda-Boyce, 

Gent, Mooney-Rivlin, Neo-Hookean, Ogden, Yeoh, and compressible materials 

include Hyperfoam, Blatz-Ko [1-5]. 
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2. Description of hyperelastic models used for tissue modelling 

Hyperelastic materials can undergo elastic deformations while retaining their 

original properties. During deformation, material models behave in a non-linear 

fashion and deformations are not directly proportional to the load. The relationship 

between deformations and stresses or strains and the energy of hyperelastic bodies 

is described by means of constitutive equations. The equations for mechanical 

energy balance are used to determine these equations [1, 2, 5]. 

Models of hyperelastic materials are isotropic and constant in relation to tem-

perature. It is believed that these materials are almost or completely incompressible 

and that the thermal expansion in the material is isotropic [1, 2, 5]. 

The very behaviour of hyperelastic materials is supported by software through 

shell, flat and volume elements [1]. 

There is a big problem with the appropriate selection of the hyperelastic model. 

In the case of almost or incompressible materials, the user must choose between 

phenomenological and micromechanical models, invariants of strain and the main 

stretching models: 

a) the Neo-Hookean is the simplest material model and good at the beginning 

of the verification of the incompressible model due to the small number of 

the parameters;  

b) the Mooney-Rivlin is one of the most popular hyperelastic models, although 

it is not suitable for capturing the stiffening effect;  

c) the Yeoh model proposes to bypass the second parametric invariant because it is 

more difficult to measure and provides a less accurate match to the limited test 

data;  

d) the Ogden is based on the main stretching, usually providing a much better 

curve fit. For this reason, sometimes it increases the complexity of calculations 

[1, 2, 4-6]. 

The hyperelastic material models used in this article, have been compared in 

the Table 1. 

Table 1 

Comparison of hyperelastic material models [1, 2, 4-10] 

N
eo

- 
H

o
o
k

ea
n
 � =

�
2
���� − 3�+ 1

� (� − 1)� (1) 

the initial bulk modulus is defined as:  

� = 	
��
�

���

���� − 3�� + 	 1

�� 	(� − 1)��
�

���

 (2) 

 
 



Identification of brains tissue hyperelastic parameters 55

M
o

o
n

ey
-R

iv
li

n
 

● 2-parameters Mooney-Rivlin option  
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for N = 1 the Yeoh model is equivalent to the Neo-Hookean.  
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The Ogden form is based on the principal stretches of the left Cauchy-Green tensor  
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the initial bulk modulus is defined as:  
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For N = 1 and �� = 2 the Ogden model is equivalent to the Neo-Hookean model.  

For N = 2, �� = 2 and �� = –2, the Ogden model is equivalent to the 2 parameter MR 

model 
 

� - strain energy potential 

���  - first deviatoric strain invariant ���  - second deviatoric strain invariant 
����� (p = 1, 2, 3) - deviatoric principal stretches 
�� - principal stretches of the left Cauchy-Green tensor  
� - determinant of the elasic deformation gradient F  


��, 
��, … ,�, �� , ��,��, �� - material constants characterizing the deviatoric deformation of the 

material  

� - material incompressibility parameter 

 
Typical properties of the brain tissue found in the literature are given in Table 2.  

Table 2 

Material properties of brain tissue [2-6] 

Hyperelastic model Material properties References 

Mooney-Rivlin (9-parameters) c10 = 240 Pa, c30 = 3 420 Pa, ν = 0.45 [2] 

Neo-Hookean 

Mooney-Rivlin 

Ogden (3rd order) 

 

c = 333.28 Pa 

c10 = 0.28 Pa, c20 = 333 Pa 

c10 = –3 543 Pa, m1 = 1, c20 = –2 723 Pa, m2 = –1, 

c30 = 654 Pa, m3 = 2 

[4] 

Yeoh (3rd order) c10 = 185 Pa, c20 = –601 Pa, c30 = 0.01 Pa [3] 

Mooney-Rivlin (9-parameters)  c10 = 62 780 Pa, c20 = 8 829 Pa, c30 = 6 868 Pa [6] 

Ogden (2nd order) 
µ1 = –124 400 Pa, α1 = 1.316, µ2 = 622 500 Pa, 

α2 = 1.299 

[5] 

Ogden (3rd order) 
µ1 = 177 000 Pa, α1 = 1.055, µ2 = 233 800 Pa, 

α2 = 1.041, µ3 = 325 100 Pa, α3 = 0.9889 

Mooney-Rivlin (2-parameters) c10 = 37 980 Pa, c01 = 104 300 Pa 

Mooney-Rivlin (5-parameters) 
c10 = –88 410 Pa, c01 = 219 700 Pa, 

c20 = 212 200 Pa, c11 = –290 900 Pa, c02 = 78 220 Pa 

Yeoh (3rd order) c10 = 159 500 Pa, c20 = –6 930 Pa, c30 = 403 Pa 
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3. The numerical model of brain tissue and the experiment

The experiment described in [2] was performed in vivo on human brain. The su

tion pipe was used to displace brain using small suction pressure. Maximum di

placement and corresponding pressure values

the adult patient with brain tumor (outside of the experiment area) was investigated 

and the procedure was safe without any harm to the patient.

The 3D models of the fragment of the brain and the suction pipe were created

in the paper referred above. The numerical simulation allows the measurement

of the displacements of the brain tissue for different pressure values. The geometry 

of the model is shown in Figure 1a. The quarter of the 3D model was analysed,

as shown in Figures 1b and 1c. The dimensions of the model are taken from [2].

The material properties of hyperelastic axisymmetric model were investigated 

in [2]. The Mooney-Rivlin 9

(first and third). The goal of the pa

with use of a more accurate 3D model. The material properties of Mooney

model are investigated, but a model more similar to [3

The proper values of two parameters 

with value 0.01 (low or near zero values like in [3

The model is analysed

software.  

 

a)  

       

Fig. 1. a) Axisymmetric geometry of the suction pipe and b

4. The inverse problem solution

The material properties for hyperelastic model were identified using optimiz

tion Non-Linear Programming by Quadratic Lagrangian

variables define the material coefficients of hyperelastic model. The objective 
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Fig. 1. a) Axisymmetric geometry of the suction pipe and brain tissue,  

b) 3D geometry, c) 3D finite element mesh 

The inverse problem solution 

The material properties for hyperelastic model were identified using optimiz

Linear Programming by Quadratic Lagrangian (NLPQL) [11]. The design 

variables define the material coefficients of hyperelastic model. The objective 
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The material properties for hyperelastic model were identified using optimiza-

(NLPQL) [11]. The design 

variables define the material coefficients of hyperelastic model. The objective 



W. Kuś, M. Poręba-Sebastjan 58 

function is defined as a sum of differences between the measured and the computed 

maximum displacements for a given design vector �: 

 ���� = �∑ ���� − ������

���
 (15) 

where � is the number of recorded displacements during experiment, ��� is the 

maximum displacement during experiment and ��� is the maximum displacement 

from numerical model for recorded point 	. The minimum value of the objective 

function is known and it is zero. The constraints on design variables are imposed 

during optimization. The determination of numerical displacements for each design 

vector leads to direct problem solution, with the use of finite element method 

(FEM). 

5. Numerical analysis  

The inverse problem was solved taken into account experimental data from [2]. 

The experiment was performed only once and only five measurements for different 

suction pressures were recorded. The optimisations were executed from few start-

ing points and leads to material parameters c10 = 75 and c20 = 721. The objective 

function f(x) is equal to 476·10
–6

. The objective function for material properties 

taken from [1] is higher and equal to 492·10
–6

. The evolution of the objective 

function along with subsequent iterations is shown in Figure 2. 

 
 

 
Fig. 2. Evolution of the objective function along with subsequent iterations 

Objective 
function [*1e-6] 

Iterations 
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The experimental and numerical maximum displacements for the best solution 

are shown in Figure 3. The deformation of the brain tissue for the maximum 

pressure is shown in Figure 4. 
 

 

Fig. 3. The maximum displacement from experiment and numerical model  

in the function of the suction pressure 

 

Fig. 4. The deformation of the brain tissue and pipe model 

6. Conclusions 

The material properties depend on the brain region, tissue type and person. 

The properties were examined for the gray matter. The inverse problem of brain 
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tissue material parameters determination was presented in the paper. For this 

purpose, the 9-parameter Mooney-Rivlin material model was used. The results of 

the investigations lead to better fit of experimental data than found in literature. 

The presented method can be applied for other mechanical and biomechanical 

material properties investigation. 
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