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Abstract. The method of evaluating the integrals through use of the matrix inversion,
presented here, was introduced by J.W. Rogers and then generalized by Matlak, Słota and
Wituła. This method is still developed and one of its other possible applications is presented

in this paper. This application concerns a new way of evaluating the integral
∫

sec2n+1 xdx

on the basis of the discussed method. Additionally, many other applications of the obtained
original recursive formula for this type of integral are given here. Some of them are used
to generate the interesting identities for inverses of the central binomial coefficients and the
trigonometric limits. The historical view is also presented as well as the connections between
the received and previously known identities.
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1. Introduction

In this note a new formula for In =
∫

sec2n+1 xdx is obtained. Our formula for

In, in comparison with the one obtained by W.V. Parker [1] by using the integration
by parts, leads to some interesting trigonometric identities for inverses of the central
binomial coefficients (see also [2–5] which are probably the basic papers considering
this subject).

Moreover, referring to [1], some interesting limits are presented in this paper.
We note that the method of evaluating In, presented in the current paper, is differ-
ent than the previously discussed methods of analytical-combinatoric nature [1,6,7].
The method of evaluating the integrals, presented here, was introduced by Rogers
in paper [8] and generalized by Matlak, Słota and Wituła in [9]. The method was also
discussed by Meemark and Sriwongsa in the paper [10].
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The binomial sums (and the special binomial sums) are of interest to physicists
who use them, for example, in performing calculations of higher order corrections of
scattering processes in the particle physics [11,12] and also in many relevant topics of
quantum mechanics (especially in q-quantum calculus). The central binomial sums
have become extremely popular in connection to the Apery’s proof of irrationality of
ζ (3) as well as in reference to many well-known conjectures on the series for powers
of π and other important constants.

In our paper, the following definition of the double factorial (for all integers n)
is used

n!! =



n−1
2

∏
k=0

(n−2k), if n > 1 is odd

n−2
2

∏
k=0

(n−2k), if n > 2 is even =

1, if n 6 0

=


n(n−2) · · ·1, if n > 1 is odd;
n(n−2) · · ·2, if n > 2 is even;
1, if n 6 0.

(1)

2. Main result

We note that all formulae, given below, hold over the set R\ π

2 Z.
First let us observe that

d
dx

(secn x) = nsecn x tanx (2)

which implies

cotx
d
dx

(secn x) = nsecn x, (3)

and then, by using (3), we have

d
dx

(cotxsecn x) = cotx
d
dx

(secn x)+ secn x
d
dx

(cotx) = nsecn x− 1
sin2 x

secn x. (4)

Application of the identity

1
sin2 x

= 1+
cos2 x
sin2 x

(5)

to (4) yields

d
dx

(
cotx secn x

)
= (n−1)secn x− 1

sin2 x
secn−2 x. (6)
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Since we are interested in integrating the odd powers of sec(x), we restrict n to be
an odd integer. Now we use (5) repeatedly in (6) which gives us the following identity

d
dx

(
cotx secn x

)
= (n−1)secn x− secn−2 x− secn−4 x−·· ·− secx− cosx

sin2 x
. (7)

Since
d
dx

(−cscx) =
cosx
sin2 x

, we can then rewrite equation (7) as follows

d
dx

(
−cscx+ cotx secn x

)
= (n−1)secn x− secn−2 x− secn−4 x−·· ·− secx (8)

for each odd positive integer n.

Integrating this equation we obtain the identity

C− cscx+ cotx secn x =

= (n−1)
∫

secn xdx−
∫

secn−2 xdx−
∫

secn−4 xdx− . . .−
∫

secxdx.

Hence, we deduce the system of equalities

C2n+1− cscx+ cotx sec2n+1 x =

= 2n
∫

sec2n+1 xdx−
∫

sec2n−1 xdx−
∫

sec2n−3 xdx− . . .−
∫

secxdx,

C2n−1− cscx+ cotx sec2n−1 x =

= 2(n−1)
∫

sec2n−1 xdx−
∫

sec2n−3 xdx−
∫

sec2n−5 xdx− . . .−
∫

secxdx,

...

C3− cscx+ cotx sec3 x = 2
∫

sec3 xdx−
∫

secxdx,∫
secxdx =

∫
secxdx,

which can be written in a more compact form as the following matrix equation
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

2n −1 −1 · · · −1 −1
0 2(n−1) −1 · · · −1 −1
0 0 2(n−2) · · · −1 −1
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · 0 1





∫
sec2n+1 xdx∫
sec2n−1 xdx∫
sec2n−3 xdx

...∫
sec3 xdx∫
secxdx


=

=



C2n+1− cscx+ cotxsec2n+1 x
C2n−1− cscx+ cotxsec2n−1 x
C2n−3− cscx+ cotxsec2n−3 x

...
C3− cscx+ cotxsec3 x∫

secxdx


. (9)

The above (n+1)× (n+1) matrix will be denoted by An for every n ∈ N.
We can deduce that

An
−1 =

1
(2n)!!



a11 a12 a13 a14 · · · a1n a1(n+1)
0 a22 a23 a24 · · · a2n a2(n+1)
0 0 a33 a34 · · · a3n a3(n+1)
...

...
...

...
. . .

...
...

0 0 0 0 · · · ann an(n+1)
0 0 0 0 · · · 0 (2n)!!


, (10)

where

aii =
(2n)!!

2(n− i+1)

for every i = 1, . . . ,n, and

ai j =
(2n)!!

(2(n− i+1))!!
(2(n− i)+1)!!

(2(n− j+1)+1)!!
(2(n− j))!!

for i < j 6 n+1. In particular, for i = 1 we obtain
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a11 :=
(2n)!!

2n
= (2(n−1))!!, a12 :=

(2n)!!
4n(n−1)

= (2(n−2))!!, (11)

a1k := 2n−k(n− k)!(2n−1)(2n−3) · · ·(2n−2k+5) (12)

= (2(n− k))!!
(2n−1)!!

(2(n− k)+3)!!

for every k = 2,3, . . . ,n and at last we get

a1(n+1) := (2n−1)!!. (13)

For example, we have

A1
−1 =

1
2

[
1 1
0 2

]
, A2

−1 =
1
8

2 1 3
0 4 4
0 0 8

 , A3
−1 =

1
48


8 2 5 15
0 12 6 18
0 0 24 24
0 0 0 48

 .
It can be proven by induction that

n

∑
k=1

a1k = (2n−1)!!. (14)

In fact, the more general identity

n

∑
k=i

aik = ai(n+1), 1 6 i 6 n,

holds (by multiplying i-th row of An
−1 by the last column of An for each i, 16 i6 n),

which is equivalent to

An
−1


1
1
...
1
−1

=


0
0
...

0
−1

 or more evidently An


0
0
...
0
−1

=


1
1
...
1
−1

 .

Similarly, from the relations (which are easy to verify):

An


2
2
...
2
2

=


2n

2(n−1)
...
2
2

 ⇔ An
−1


2n

2(n−1)
...
2
2

=


2
2
...

2
2


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we obtain the convolution type identity

ai(n+1)+
n

∑
k=i

(n− k+1)aik = 2ai(n+1)+
n−1

∑
k=i

(n− k)aik = (2n)!!.

Note that from (9), (10) and (14) we easily deduce our main formula

∫
sec2n+1 xdx =

1
(2n)!!

(cotx)
n

∑
k=1

a1k sec2(n−k)+3 x− 1
(2n)!!

(
n

∑
k=1

a1k

)
cscx

+
1

(2n)!!
a1(n+1)

∫
secxdx =

1
(2n)!!

(cotx)
n

∑
k=1

a1k sec2(n−k)+3 x− (2n−1)!!
(2n)!!

cscx

+
(2n−1)!!
(2n)!!

ln(secx+ tanx), (15)

i.e.,∫
sec2n+1 xdx =

=
cscx
(2n)!!

n

∑
k=1

a1k sec2(n−k+1) x+
(2n−1)!!
(2n)!!

(ln(secx+ tanx)− cscx) , (16)

where a1k are defined by expressions (11)-(13). For example, we obtain∫
sec7 xdx =

= cscx
(1

6
sec6 x+

1
24

sec4 x+
5
48

sec2 x
)
+

5
16
(

ln(secx+ tanx)− cscx
)
.

Parker presented in [1] the alternative formula (obtained by integrating by parts
the respective integral):∫

sec2n+1 xdx =

(2n
n

)
4n

[
log(secx+ tanx)+

n

∑
k=1

4k

2k
(2k

k

) sec2k xsinx

]
(17)

which is compatible with our formula (16) and implies the interesting trigonometric
identity

1+ sin2 x
n

∑
k=1

4k

2k
(2k

k

) sec2k x =
(2(n−1))!!
(2n−1)!!

sec2n x+
n−1

∑
k=1

4k−1

(4k2−1)
(2(k−1)

k−1

) sec2k x

=
(2(n−1))!!
(2n−1)!!

sec2n x+
n−2

∑
k=0

4k

(4(k+1)2−1)
(2k

k

) sec2(k+1) x, (18)



Matrix methods in evaluation of integrals 109

since we have

1
(2n)!!

a1,n−k+1 =
(2n−1)!!
(2n)!!

· 1
(2k−1)(2k+1)

· (2k−2)!!
(2k−3)!!

= 4−n
(

2n
n

)
· 1

(4k2−1)4−k+1
(2(k−1)

k−1

)
for every k = 1,2, . . . ,n− 1. Setting x = 0 in (18) gives the binomial-coefficient
identity

1− 1
2n
· 4n(2n

n

) = n−2

∑
k=0

4k

(4(k+1)2−1)
(2k

k

) , (19)

which is the recursive relation for one of the following sequences of real numbers:

either for
{ 4k(2k

k

)}∞

k=0
or better for

{ 4k

(2k+1)(2k+3)
(2k

k

)}∞

k=0
(see also similar type

relations (20), (21) and (24) given below).
Let us notice that (19) is equivalent to (14), and we get it analytically. From (17)

we obtain one more formula observed by Parker

lim
x→0

x∫
0

sec2n+1 ydy

sinx
= 4−n

(
2n
n

)[
1+

n

∑
k=1

4k

2k
(2k

k

)] .
Using de l’Hospital’s rule we get

lim
x→0

x∫
0

sec2n+1 ydy

sinx
= lim

x→0

sec2n+1 x
cosx

= 1

which easily implies the purely algebraic form of the given Parker’s formula above

1+
n

∑
k=1

4k

2k
(2k

k

) = 4n(2n
n

) . (20)

In [4], among many similar types of formulae, the following one is also given

1+
n−1

∑
k=0

4k

(2k+1)
(2k

k

) = 4n(2n
n

) . (21)

But this is hardly surprising, since the sums on the right hand side of equalities
(20) and (21) for fixed n ∈ N are termwise the same

4k

(2k+1)
(2k

k

) = 2 ·4k

(2k+2)2k+1
k+1

(2k
k

) = 2 ·4k

(2k+2)
(2k+1

k+1

) = 4k+1

(2k+2)
(2k+2

k+1

) . (22)
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Similarly we obtain

4k

(4(k+1)2−1)
(2k

k

) = 2 ·4k

(2k+2)(2k+3)2k+1
k+1

(2k
k

) = 4k+1

2(k+1)(2(k+1)+1)
(2k+2

k+1

) ,
which means that identity (19) is equivalent to the identity

n−1

∑
k=1

4k

2k(2k+1)
(2k

k

) = 1− 4n

2n
(2n

n

)
(cf. [3, Theorem 4.3]).

From (19) and (21) we also deduce the relation

3+
n−1

∑
k=0

4k

(2k+3)
(2k

k

) = 4n(2n
n

) + 4n+1

(n+1)
(2n+2

n+1

) = 2n+3
2n+1

· 4n(2n
n

) . (23)

We note that the formula

n

∑
k=1

4k

2k
(2k

k

) = n−1

∑
k=0

4k

(2k+1)
(2k

k

) , (24)

which follows from (22), is connected with the formula obtained by P. Bundschuh
(see Aufgabe 811, Elemente der Mathematik):

2n
n

∑
k=0

(
2k
k

)
4−k

2(n− k)−1
= (2n+1)

n−1

∑
k=0

(
2k
k

)
4−k

2(n− k)+1
.

At last, from (18) and (20) we get the limit

lim
x→0

1− (2(n−1))!!
(2n−1)!! sec2n x−

n−2
∑

k=0

4k

(4(k+1)2−1)(2k
k )

sec2(k+1) x

sin2 x
=

=−
n

∑
k=1

4k

2k
(2k

k

) = 1− 4n(2n
n

) . (25)

Moreover, one can easily notice that there exists the following limit

lim
x→0

1− (2(n−1))!!
(2n−1)!! sec2 x−

n−2
∑

k=0

4k

(4(k+1)2−1)(2k
k )

sec2(n−k) x

sin2 x
=

n

∑
k=1

4k

2k
(2k

k

) − (n+1).

Unfortunately, we were not able to determine this limit analytically for every n ∈ N,
n > 2. We evaluated the correctness of this formula only by hand calculations
for n = 2, . . . ,5 and by numerical calculations for n = 2, . . . ,100.
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3. Conclusions

1. The standard reference for the binomial-coefficient identities is the Gould’s
paper [2], where equations (2.9), (2.20), (2.21), (2.22) and (2.23) involve such sums.
The appearance of the identity (due to Hjortnaes [13], see also the new paper by
Jakob Ablinger [14]):

ζ (3) =
5
2

∞

∑
n=1

(−1)n−1

n4
(2n

n

)
in Apéry’s proof of the irrationality of ζ (3) (see [15]) stimulated something of
a vogue for the infinite series involving the reciprocals of central binomial coeffi-
cients starting in the late 1970s (see [16, 17]), and some of this spilled over into
works on the finite sums. In this connection, it is helpful to look at Sprugnoli [3],
who gives the additional references to older papers (though he missed Parker [1]:
the above formula (20), that appears at the end of Parker’s note, is the Sprugnoli’s
Theorem 4.1 - which is also the Gould’s equation (2.9)).

2. During the review process of this paper, we discovered, by using Parker’s
formula (20), the following convolution type identity (see [18, 19]), which holds for
each n ∈ N:

an

n−1

∑
k=1

1
akan−k

=
n
2
−1− n(n+1)

22n+1

n

∑
k=1

(
2n

n+ k

)
(−1)k−1

k2 , (26)

where an :=
(

2n
n

)
for every n ∈ N.

3. The method of generating the combinatoric identities, proposed in this paper,
has just been sketched by us and it may still give a lot of satisfaction to the readers
interested in continuing or even in generalizing this subject matter.

Moreover, it should be emphasized that the calculation method is used in this
paper in terms of basic consideration. The theoretical foundations indicates the re-
markable similarity, or even the full compliance, with the consideration carried out in
paper [20]. It refers to the relations between the categorical structures and infinitesi-
mal calculus. We plan to refer to this topic in a separate paper.

Exploring the literature, one can also find some other methods referring to the
method presented in this paper, e.g. the methods using the determinants of matrices
which are discussed in [21–25].
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219-231.

[19] Wituła, R., Hetmaniok, E., Słota, D., & Gawrońska, N. (2013). Convolution identities for central
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