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Abstract. In this paper we propose a method for calculating steady-state probability  

distributions of the single-channel closed queueing systems with arbitrary distributions of 

customer generation times and service times. The approach based on the use of fictitious 

phases and hyperexponential approximations with parameters of the paradoxical and com-

plex type by the method of moments. We defined conditions for the variation coefficients 

of the gamma distributions and Weibull distributions, for which the best accuracy of calcu-

lating the steady-state probabilities is achieved in comparison with the results of simulation 

modeling. 

 

MSC 2010: 60G10, 60J28, 60K25, 93B40 

Keywords: single-channel closed queueing system, arbitrary distributions, hyperexponential 

approximation  

1. Introduction  

The purpose of this work is the analysis of a model of a single-channel closed 

queueing system that is employed, in particular, in the theory of communication 

networks and integral queueing networks [1-4]. A closed system is also known  

as a system with a finite number of sources or the Engset system. We assume  

that customers from m  identical sources are fed to a queueing system. Each source 

can generate only one customer, and the next customer is not sent if the previous 

customer is not processed. The time interval from the moment at which the  

customer is returned to the source to the moment of the arrival of this customer to 

the system is the customer generation time. Intensity of the input flow of customers 

of a closed system depends on the number of customers in the system ( )t   

at moment t and is proportional to the value ( ).m t   
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Works [5-8] show that the use of hyperexponential approximation (denoted by  
 

lH ) makes it possible to determine with high accuracy the steady-state probabilities 

of non-Markovian queuing systems. These probabilities are determined using solu- 
 

tions of a system of linear algebraic equations obtained by the method of fictitious  
 

phases. To find parameters of the lH -approximation of a certain distribution,  

it is sufficient to solve the system of equations of the moments method. For the  
 

values 1V   of the variation coefficient, roots of this system are complex-valued  
 

or paradoxical (i.e., negative or with probabilities that exceed the boundaries of  
 

the interval [0, 1]) but in most cases as a result of summation of probabilities of  

microstates, their complex-valued and paradoxical parts are annihilated. 

The hyperexponential approximation method in the work [8] was used to calcu- 

late steady-state probabilities of a closed system with exponentially distributions of 

customer generation times. The purpose of the paper is to use the hyperexponential 

approximation method for calculating steady-state probabilities of single-channel 

closed queueing systems with arbitrary distributions of customer generation times 

and service times. We indicate ways to evaluate the accuracy of approach the  

obtained steady-state distribution to the true distribution without the need of using 

simulation models.  

2. Equations for steady-state probabilities of the H4/Hl/1/m  

closed system  

The hyperexponential distribution of order l  is a phase-type distribution and  
 

provides for choosing one of l  alternative phases by a random process. With  

probability iy , the process is at the i-th phase and is in it during an exponentially 

distributed time with a parameter i . 

Suppose that the customer generation time is distributed according to the hyper- 
 

exponential law 4H  with probabilities i  and parameters (1 4)i i  , and the 

service times of each customer are independent random variables distributed  
 

according to the hyperexponential law ( 2)lH l   with probabilities s  and parame-

ters (1 )s s l  . The closed system under consideration is denoted by H4/Hl/1/m  

and will be used for an approximate calculation of the steady-state probabilities of  
 

the G/G/1/m closed system. 

Let us enumerate the H4/Hl/1/m system’s states as follows: 0( , , , )i j u vx  corresponds 

to the empty system, and , , ,i j u v  are the number of customers for which the  

generation time is in the first, second, third and fourth phase, respectively; ( , , , , )k i j u v sx   

is the state, when there are k  customers in the system (1 )k m  , and , , ,i j u v   

are the number of customers for which the generation time is in the first, second, 
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third and fourth phase, respectively, and s  is the phase number of service time.  
 

The proposed numbering of the states differs from that introduced in the works  
 

[6-8] and helps reduce the number of states of the H4/Hl/1/m closed system.  
 

We denote by 0( , , , )i j u vp  and ( , , , , )k i j u v sp , steady-state probabilities that the system is 

in the each of these states respectively. Since the process of changing the states of  
 

the system is Markovian with continuous time, for the steady-state probabilities  
 

0( , , , )i j u vp  and ( , , , , )k i j u v sp  we obtain a system of linear algebraic equations that  

follows from the Kolmogorov system of differential equations. Here we only  
 

provide equations that correspond to states 0( , , , )i j u vx  and a normalization condition: 

 
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In addition to the equations given in (1), we write the equations corresponding 

to the following states separately: 
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Solving the system of linear algebraic equations, we find the steady-state proba-

bilities kp  of the presence in the closed queueing system of k  customers using  

the formulas 
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3. Numerical results 

The method of potentials was used in [9] to construct an algorithm that makes  

it possible to determine the steady-state distribution of the number of customers for 

a single-channel closed queueing system with exponentially distributed customer 

generation times and an arbitrary distribution of service times. This method is  

not suitable for the G/G/1/m closed queueing systems.  

For the M/G/1/m closed queueing systems the deviation ( )

0

| |
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sim k k sim

k

p p

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of distribution ( ){ },k simp  obtained using the GPSS World simulation system [10], 

from the distribution { },kp  obtained using the method of potentials, exceeds 10
–4

. 

In this section, we consider the G/G/1/m closed queueing systems with  

the gamma distributions and Weibull distributions and determine the values of the 

variation coefficients of these distributions, for which the condition 
4

(6,5) 10   

holds when calculating the steady-state distribution of the number of customers in 

the system. If this condition is fulfilled, the distribution (6){ }kp  is a more accurate  

approximation to the true steady-state distribution { }kp  than the distribution  

obtained using the GPSS World simulation system. Here (6,5) (6) (5)

0

| |
m

k k

k

p p


    

gives an opportunity to estimate the deviation of distributions (6){ }kp  from distri-

butions (5){ },kp  and ( )k lp  are values of probabilities kp  obtained using the 

H4/Hl/1/m system as an approximation of the G/G/1/m system. 
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Let Γ(V) and W(V) denote the gamma distribution and Weibull distribution  

with coefficients of variation V. For convenience, we introduce the following num-

bering of closed queueing systems: assign the Г(V)/Г(V2)/1/7, Г(V)/W(V2)/1/7, 

W(V)/W(V2)/1/7, W(V)/Г(V2)/1/7, Г(V1)/Г(V)/1/7, W(V1)/Г(V)/1/7, W(V1)/W(V)/1/7, 

Г(V1)/W(V)/1/7 systems numbers 1-8 respectively. We take 7m  , ( ) 1E T  , 

sv( ) 0.3E T  . Here ( )E T  and sv( )E T  denote the mean of the customer generation 

times and the service times, respectively. 

The numerical results are presented in Table 1. Of all the intervals correspond-

ing to the Г(V) distributions, the values 0.5V   and 1/ 2V   of the variation  

coefficient should be excluded, since for the Г(0.5) distribution it is not possible to 

construct approximations with the help of hyperexponential distributions of order 

higher than the third, and hyperexponential approximations do not exist for the 

(1/ 2)Г  distribution. 

Table 1. List of the G/G/1/7 closed systems with the gamma distributions and 

Weibull distributions for which condition 4
(6,5) 10   holds 

V 
System 

number 

Values of V2  

for systems 

with numbers 1-4 

System 

number 

Values of V1  

for systems 

with numbers 5-8 

0.001 

1 [0.51, 1.3] 5 [0.8, 100] 

2 [0.5, 1.1] 6 [0.4, 10] 

3 [0.5, 1.1] 7 [0.4, 10] 

4 [0.51, 1.3] 8 [0.8, 100] 

0.1 

1 [0.51, 1.3] 5 [0.8, 100] 

2 [0.5, 1.1] 6 [0.4, 10] 

3 [0.5, 1.1] 7 [0.4, 10] 

4 [0.51, 1.3] 8 [0.8, 100] 

0.2 

1 [0.4, 1.3] 5 0.4, [0.8, 100] 

2 [0.4, 1.1] 6 [0.3, 10] 

3 [0.4, 1.1] 7 [0.3, 10] 

4 0.4, [0.51, 1.3] 8 0.4, [0.8, 100] 

0.3 

1 [0.3, 1.4] 5 [0.3, 0.4], [0.8, 100] 

2 [0.3, 1.2] 6 [0.3, 10] 

3 [0.2, 1.2] 7 [0.3, 10] 

4 [0.2, 0.4], [0.51, 1.4] 8 [0.3, 0.4], [0.8, 100] 

0.4 

1 [0.2, 1.4] 5 [0.2, 0.4], [0.8, 100] 

2 [0.2, 1.2] 6 [0.2, 10] 

3 [0.001, 1.2] 7 [0.2, 10] 

4 [0.001, 0.4], [0.51, 1.4] 8 [0.2, 0.4], [0.8, 100] 

0.5 
3 [0.001, 1.2] 7 [0.001, 10] 

4 [0.001, 0.4], [0.51, 1.4] 8 – 

0.6 

1 [0.99, 1.3] 5 [0.001, 0.4], [0.8, 100] 

2 [1.1, 1.2] 6 [0.001, 10] 

3 [0.001, 1.2] 7 [0.001, 10] 

4 [0.001, 0.4], [0.51, 1.5] 8 [0.001, 0.4], [0.8, 100] 
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Cont. Table 1 

V 
System 
number 

Values of V2  

for systems 

with numbers 1-4 

System 
number 

Values of V1  

for systems 

with numbers 5-8 

0.7 

1 [0.8, 1.4] 5 [0.001, 0.4], [0.8, 100] 

2 [0.99, 1.2] 6 [0.001, 10] 

3 [0.001, 1.3] 7 [0.001, 10] 

4 [0.001, 0.4], [0.51, 1.5] 8 [0.001, 0.4], [0.8, 100] 

0.8 

1 [0.001, 1.5] 5 [0.001, 0.4], [0.7, 100] 

2 [0.001, 1.3] 6 [0.001, 10] 

3 [0.001, 1.3] 7 [0.001, 10] 

4 [0.001, 0.4], [0.51, 1.5] 8 [0.001, 0.4], [0.8, 100] 

0.9 

1 [0.001, 1.5] 5 [0.001, 0.4], [0.7, 100] 

2 [0.001, 1.3] 6 [0.001, 10] 

3 [0.001, 1.3] 7 [0.001, 10] 

4 [0.001, 0.4], [0.51, 1.5] 8 [0.001, 0.4], [0.8, 100] 

1.1 

1 [0.001, 1.5] 5 [0.001, 0.4], [0.6, 100] 

2 [0.001, 1.3] 6 [0.001, 10] 

3 [0.001, 1.3] 7 [0.001, 10] 

4 [0.001, 0.4], [0.51, 1.5] 8 [0.001, 0.4], [0.6, 100] 

1.2 

1 [0.001, 1.5] 5 [0.001, 0.4], [0.6, 100] 

2 [0.001, 1.3] 6 [0.001, 10] 

3 [0.001, 1.3] 7 [0.3, 10] 

4 [0.001, 0.4], [0.51, 1.5] 8 [0.3, 0.4], [0.6, 100] 

1.3 

1 [0.001, 1.5] 5 [0.001, 0.4], [0.6, 100] 

2 [0.001, 1.3] 6 [0.001, 10] 

3 [0.001, 1.3] 7 [0.7, 10] 

4 [0.001, 0.4], [0.51, 1.5] 8 [0.8, 100] 

1.4 

1 [0.001, 1.5] 5 [0.3, 0.4], [0.7, 100] 

2 [0.001, 1.3] 6 [0.3, 10] 

3 [0.001, 1.3] 7 – 

4 [0.001, 0.4], [0.51, 1.5] 8 – 

1.5 

1 [0.001, 1.5] 5 [0.8, 2.3] 

2 [0.001, 1.3] 6 [0.6, 10] 

3 [0.001, 1.3] 7 – 

4 [0.001, 0.4], [0.51, 1.5] 8 – 

1.6 

1 [0.001, 1.5] 5 – 

2 [0.001, 1.3] 6 – 

3 [0.001, 1.3] 7 – 

4 [0.001, 0.4], [0.51, 1.5] 8 – 

10 

1 [0.001, 1.4] 5 – 

2 [0.001, 1.3] 6 – 

3 [0.001, 1.3] 7 – 

4 [0.001, 0.4], [0.51, 1.5] 8 – 
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4. Conclusions 

This paper shows that the application of hyperexponential approximation of  

distributions of customer generation times, and the service times allow us to  

calculate steady-state probabilities of the single-channel closed queueing systems 

with arbitrary distributions of customer generation times and service times, with 

high accuracy (higher than in the case of using simulation models). We find these 

probabilities using solutions of a system of linear algebraic equations obtained  

by the method of fictitious phases. To obtain parameters of lH -approximation of  

a certain distribution, it is necessary to solve the system of equations of the  

moments method.  

Computing deviations (6,5)  allows us to track the accuracy of approaching  

distributions ( ){ }k lp  to the true distribution { }kp  without the need of using simula- 

tion models. We defined conditions for the variation coefficients of the gamma  

distributions and Weibull distributions, for which the best accuracy of calculate- 

ing the steady-state probabilities is achieved compared with the case of using  

simulation models. 
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