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Abstract. In the past, the density-gradient term of second-order macroscopic models was
replaced with a speed-gradient term to rectify the rearward movement of traffic waves.
Hither, a classical speed-gradient macroscopic model is extended to account for the lateral
flow dynamics on a multi-lane road. The anisotropic model is modified to capture some
inherent vehicular multi-lane traffic features; lateral viscosity and velocity differentials.
These variables are quantized within the scope of a two-dimensional spatial domain as
opposed to the existing one-dimensional model. A detailed exemplification of acceleration
and deceleration waves, stop-and-go waves, and cluster effects are presented to explain
the path of information flow. All these non-linear flow properties are evident throughout
the simulation.
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1. Introduction

The traffic flow equation by Lighthill and Whitham [1], together with Richards
[2], is one of the most widely used models for traffic analysis. It is simply called the
LWR model. It is described by a single equation following a similar principle as the
continuity equation. However, the LWR model was criticized based on the following.
The inability of the model to describe traffic breakdown. LWR models have infinite
acceleration. Traffic capacity and the characteristic waves are determined entirely by
the finite speed adaptation times and reaction times. There is the absence of inertial
effect in the LWR model, hence an instantaneous adjustment of vehicle velocity.
Drivers are not able to predict in advance the changes in traffic conditions, thus the
difficulty adjusting their speed to the average velocity [3–5].

Due to these flaws, the dynamic velocity equation was developed along with the
LWR to model these shortcomings. This speed equation originated from the writings
of Payne [3] and Whitham [6]. Later, the second-order isotropic equation was again
flawed for its backward traveling wave properties [7]. This led to the development of
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models having anisotropic property. The most common among these are the Zhang
models [8, 9], Aw-Rascle Model [10], and the Jiang-Wu-Zhu (JWZ) model [11].
Zhang proposed a non-equilibrium model devoid of gas-like behavior. Aw and
Rascle replaced the space derivative with a convective derivative. Jiang, Wu, and
Zhu replaced the density gradient component in the Payne-Whitham model with
a speed gradient quantity. These authors made these modifications to resolve the
backward traveling wave critic by Daganzo. In the recent past, anisotropic and
isotropic models have been extended to address more realistic traffic phenomenon.
The Payne-Whitham model has been extended to capture driver physiological
response [12] and driver reaction to traffic stimuli [13]. The Jiang-Wu-Zhu has been
extended to account for diffusion [14], whereas the Zhang and Aw-Rascle models
have been extended to explicitly model lane-changing behavior on motorways [15].

However, these second-order models have not explicitly accounted for viscosity
for multi-lane traffic flow. An earlier attempt to model resistance was through the
diffusion models [16–18]. These models were presented within a one-dimensional
spatial domain as opposed to viscosity that is observable within a two-dimensional
spatial domain. In this paper, we present a two-dimensional macroscopic model that
accounts for viscosity. An additional source term is introduced into the dynamics
velocity equation to model traffic viscosity. This new quantity is derived from the
theory of fluid dynamics and illustrated through the physics of non-slip condition
in Figure 1.

Fig. 1. Velocity differentials across fluid flow [19]

This figure is loosely used to illustrate an arbitrary multi-lane flow. It is assumed
that the velocities of this flow differ from lane to lane. The velocities for lanes
1,2, · · · ,n are u1,u2, · · · ,un respectively. The speed increases by moving towards the
inner lanes. Vehicles on lane n have the greater speed, whereas vehicles on lane 1
have the least speed. With this characterization, the inter-lane traffic resistance can
be modeled using Newton’s law of viscosity

ρ = ϑ ∗du/dy (1)

ρ is used to denote the total shear effect. ϑ is the viscosity rate. This explains the
resistance of the traffic to shear forces. The rate is smaller when two adjacent vehicles
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have little impact on each other. The speed differential du/dy accounts for the speed
changes of adjacent vehicles driving in the same direction at a given point in time.
For instance, if vehicle A is speeding at Φ1m/s on lane m at time t, and vehicle B has
speed Φ2m/s on lane m+1 at the same time and location, then the velocity gradient
du/dy = |Φ1m/s−Φ2m/s|. Thence, the researchers seek to incorporate the term
ϑ ∗du/dy into the existing class of macroscopic models.

The following sections are organized as follows: In section 2, a new dynamic
velocity equation is derived from a reduced Navier-Stokes equation. The properties of
this viscous model are presented in section 3. It is followed by a numerical solution of
this system of equations. The solution characterizes some nonlinear dynamic traffic
properties such as shock-wave and rarefaction wave effects, stop-and-go traffic, and
local cluster effects. In section 6, we present a general summary of the entire paper.

2. The model derivation

Second-order macroscopic traffic flow models are constituted by two equations;
the LWR equation and an acceleration equation. The LWR model is expressed as

∂k(x, t)
∂ t

+
∂q(x, t)

∂x
= 0 (2)

where k(x, t) is the density, u(x, t) is the speed and q(x, t) = k(x, t)u(x, t) is the flow
rate.

As stated afore, the acceleration equation was introduced to overcome the
shortcomings of the LWR model. In this section, we derive a new dynamic velocity
equation from the reduced Navier-Stokes equation. From [20], the two-dimensional
Navier-Stokes equation is expressed as:

k
(

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

)
= gx−

∂P
∂x

+ϑ

(
∂ 2u
∂ 2x

+
∂ 2u
∂ 2y

)
(3a)
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)
(3b)

ϑ is the viscosity rate, P is the pressure, gx and gy are the gravitational forces,
respectively, k is the density, u is the speed in the x-direction and v is the speed in the
y-direction. From the physics of traffic flow (Fig. 1), we realize that there is zero
flow in the y-direction; hence v and its derivative go to zero. Thus, (3b) ceases to
exist and equation (3) reduces to
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In deriving the lateral velocity gradient term, the quantity ∂
2u/∂

2y is decoupled
as a constant and a first derivative term

∂ 2u
∂y2 ≈ fy

∂u
∂y

The quantity fy is used to delineate traffic sensitivity. This parameter will be modeled
in parallelism to the sensitivity term in microscopic models [21, 22]. Note that the
diffusive term is assumed to be zero. As the inter-lane gap between two adjoining
vehicles declines, their velocities reduce as well. In other words, the flux reduces
as traffic becomes viscous. In accounting for this, a negative sign is introduced to
capture this relationship

k
(

∂u
∂ t

+u
∂u
∂x

)
= gx−

∂P
∂x
−ϑ

(
fy

∂u
∂y

)
(5)

Continuing from (5), the net impact of pressure force is replaced with the
relaxation term [V (k)−u]/τ from the classical JWZ model. This is introduced to
ensure that vehicles do not collide with each other. Another important term in the
classical equation is the speed gradient. The authors brought in the gradient term
c1 ∗ ∂u/∂x to address the problem of backward reaction to stimuli by drivers. c1 is
the driver anticipation rate. This quantity is directly imported from the classical
model into this new formulation. Finally, gx is assumed to be zero. Therefore, the
new dynamic velocity equation is expressed as:

∂u(x, t)
∂ t

+u(x, t)
∂u(x, t)

∂x
=

V (k(x, t))−u(x, t)
τ

+c1
∂u(x, t)

∂x
−ϑ

fy

k(x, t)
∂u(x, t)

∂y
(6)

This new dynamic velocity equation (6) coupled with the LWR model (2) form the
two-dimensional viscous anisotropic second-order macroscopic traffic flow model.

3. Properties of the viscous macroscopic model

The two-dimensional model is given as

∂k(x, t)
∂ t

+
∂q(x, t)

∂x
= 0 (7a)
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(7b)

Equation (7) is expressed in its quasi-linear form as:
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let Ψ =

[
k(x, t)
u(x, t)

]
, C(Ψ) =

[
u(x, t) k(x, t)

0 u(x, t)− c1

]
and D(Ψ) =

 0
V (k(x, t))−u(x, t)

τ
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k(x, t)
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, then equation (8) becomes

∂Ψ

∂ t
+C(Ψ)

∂Ψ

∂x
= D(Ψ) (9)

The characteristic variables of the homogeneous model are obtained by first
computing for the eigenvalues of the matrix C(Ψ). The eigenvalues are computed as
follows [

u(x, t)−λ k(x, t)
0 u(x, t)− c1−λ

]
= 0

[u(x, t)−λ ][u(x, t)− c1−λ ] = 0 and λ1 = u(x, t)− c1, λ2 = u(x, t)

Since the parameter c1 is assumed to be greater than zero, the viscous model is strictly
hyperbolic. These eigenvalues commensurate that driver behavior is not affected by
backward stimuli. The speed of the traffic exceeds the characteristic wave speeds,
thus, the anisotropic phenomenon of traffic flow is conserved.

In order to compute for the eigenvectors, we use the expression[
u(x, t)− [u(x, t)− c1] k(x, t)

0 u(x, t)− c1−u(x, t)+ c1

][
x1
x2

]
= 0

Therefore, the matrix of eigenvectors is also computed as:

M =

−k(x, t)
c1

1

1 0

 with the inverse M−1 =

0 1

1
k(x, t)

c1

 (10)

The matrix of eigenvectors and its inverse are used to compute for the
compatibility equations. Multiplying equation (9) by M−1, we have

M−1 ∂Ψ

∂ t
+M−1C(Ψ)

∂Ψ

∂x
= M−1D(Ψ) (11)

Considering any small change in δΨ, then the Riemann variables r1,2 are
deduced as

δ r = M−1
δΨ and inversely as δΨ = Mδ r (12)

That is to say that

∂Ψ
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= M

∂ r
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= M

∂ r
∂x

(13)
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Substituting equation (13) into (11), we obtain

M−1M
∂ r
∂ t

+M−1C(Ψ)M
∂ r
∂x

= M−1D(Ψ)

as required.
From equation (12), δ r = M−1

δΨ can be recast as:

δ

[
r1
r2

]
=

0 1

1
k(x, t)

c1

δ

[
k(x, t)
u(x, t)

]
with

δ r1 = δu(x, t) and δ r2 = δk(x, t)+
k(x, t)

c1
δu(x, t) (14)

By integrating both sides of (14), we obtain the wave propagation paths for the
viscous JWZ model as

r1 = u(x, t) and r2 = k(x, t)+
1
c1

u(x, t)

The propagation of r1 is along the characteristic u(x, t), whereas the propagation
of r2 is along the characteristic u(x, t)− c1. The characteristic speed u(x, t)− c1 is
associated with a shock-wave and a rarefaction wave. These are illustrated
graphically in the next section. The eigenvalue u(x, t) linearly degenerate.

4. Numerical solution of the viscous macroscopic model

The first upwind finite difference scheme is used to solve the viscous JWZ model
[11, 14]. The modified model is solved as a Riemann problem using the following
initial condition:

k(x,0) =

{
kl(x, t), if x > midx

kr(x, t), if x≤ midx
and u(x,0) =

{
ul(x, t), if x > midx

ur(x, t), if x≤ midx

where kl(x, t) and ul(x, t) are the upstream density and speed respectively. kr(x, t)
and ur(x, t) are the downstream commensurate terms. midx divides the assumed road
section into two halves. The formation and dissolution of queues from a given point
(e.g. traffic light) is explored using these initial conditions. kl(x, t) less than kr(x, t)
signifies a platoon of high speed vehicles reaching up with a platoon of slower
vehicles or stopped vehicles. The opposite kl(x, t) greater than kr(x, t) shows
the dissolution of a traffic jam.
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The discrete version of the viscous JWZ model is expressed by equations (15) and
(16). For the first updating equation, the discretized form is given as

k(i, j+1) = k(i, j)+
∆t
∆x

u(i, j) [k(i−1, j)− k(i, j)]+
∆t
∆x

k(i, j) [u(i, j)−u(i+1, j)]
(15)

whereas the dynamic velocity equation is given as

u(i, j+1) = u(i, j)+
∆t
∆x

[c1−u(i, j)] [u(i, j)−u(i−1, j)]

− ∆t
∆y

ϑ fy

k(i, j)
(um(i, j)−um+1(i, j))+

∆t
τ
(V (i, j)−u(i, j)) (16)

The spatial step sizes are i,m ∈ N. j ∈W is the time discretization size. V (i, j) is
defined by the underlying fundamental equation [23]

V (i, j) = umax

{
1− exp

[
1− exp

(
km

umax

(
kmax

k(i, j)

)
−1
)]}

(17)

km is the speed of the kinematic wave during congestion. Given the initial density and
speed profiles, equations (15) and (16) are used to determine the density and speed
profiles at the next time step j+1.

The Courant-Friedrichs-Lewy (CFL) is used to ascertain the condition for
convergence of the numerical scheme [24]. The CFL is a necessary condition for the
stability of the numerical method. Given this viscous model, the numerical scheme
is stable if

max
{

umax− c1,q′(k(x, t))
}
· ∆t

∆x
≤ 1 (18)

4.1. Simulation results
The following realistic values are adopted for the simulation. A hypothetical

road length (L) of 20 kilometers is divided into 100 equally spaced sizes. The
simulation will span 10 minutes, with a time interval of 1 s. The maximum density
is standardized with kmax equal unity. The anticipation rate c1 = 11 m/s =
= km,ϑ = 0.011, and τ = 10 s [11]. Inter lane sensitivity fy = 0.37 s−1 as deduced
from [22]. The free-flow speed is 30 m/s. According to the international European
report, the maximum speed limit for a motorway is 33.333 m/s, an express road
is 27.778 m/s, and a normal road is 22.225 m/s [25]. Hence, the lateral velocity
gradient is deduced as 5.55 m/s in absolute terms for driving on adjacent lanes.

We present two graphical illustrations for shock-wave traffic. The case when the
traffic light turns red (Fig. 2), and a situation of a free-flow flowing traffic merging
with somewhat dense traffic (Fig. 3). The instances when the traffic light turns green
(Fig. 4), and slightly dense traffic catches up with a normal flow (Fig. 5) are the two
exemplifications for rarefaction waves.
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The graphical plot (Fig. 2) depicts heavy dense traffic upstream merging with
a stopped queue. There is the formation of long queues with a jam density traveling
backward. The maximum speed of vehicles reduces to 5 m/s.

Fig. 2. Shock wave profiles with initial density kl = 0.7 and kr = 1

In Figure 3, both densities, up and down the discontinuity, are below the average
concentration value. Nonetheless, the frontal density is greater. Hence, the traffic
breakdown is not easily observable. Vehicles in the first half after the discontinuity
can still achieve maximum speed. There is no stopped traffic within the first few
minutes of the simulation, all the same, the queue begins to form after some time
interval.

Fig. 3. Shock wave profiles with initial density kl = 0.15 and kr = 0.3

Figure 4 describes very dense traffic (almost coming to a complete stop)
approaching a near-empty road. A likely related illustration is when the traffic turns
green. The queue dissolves gradually with time. There is no stopped vehicle in the
queue at the end of the simulation time.

From Figure 5, the densities upstream and downstream are above and below
the average density respectively. Noticeably, the traffic dissolves moderately with
time. There is neither a jam density nor a zero density. The flow of vehicles
continues at an average, uninterrupted speed.
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Fig. 4. Rarefaction wave profiles with initial density kl = 0.9 and kr = 0.01

Fig. 5. Rarefaction wave profiles with initial density kl = 0.7 and kr = 0.3

These results demonstrate a realistic highway traffic phenomenon. The model
can explicate a platoon of high-speed traffic conceding with either jammed traffic
or fairly jammed traffic. The reverse, a platoon of jam traffic conceding with
high-speed vehicles is also revealed through these analyses.

A further simulation is carried out to determine how the rate of viscosity
influences the speed of vehicles. Different viscous rates are selected by the
researchers to explore its role in traffic analysis. From Figure 5, vehicles leaving the
jam could attain the maximum speed with ϑ equal 0.011. With similar illustrations
in Figure 6, the speed of the vehicles decreases as ϑ is made to increase. Generally,
it can be observed that rates greater than 0.011 have tendencies to disrupt the flow of
traffic and eventually cause the traffic to come to a stop. Note that this speed drop
is not as a result of a surge in density, rather, it is attributed to a lateral traffic
impediment. This illustration indicates that viscosity is an important element in
macroscopic traffic modeling.
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(a) ϑ = 0.11 (b) ϑ = 0.21

(c) ϑ = 0.31 (d) ϑ = 1.11

Fig. 6. Dissolution of traffic for different values of ϑ with the initial density kl = 0.7 and kr = 0.3

5. Cluster effects

A local perturbation of steady traffic may either blow-up or go into extinction.
Homogeneous traffic will continue in its original state after some displacement
when the prevailing density is way below/above the critical density. When
the concentration is within certain neighborhood values of the critical density,
an infinitesimal displacement will cause the traffic to blow-up over time.
The amplification of this displacement through the traffic medium is referred to
as local cluster effects or simply cluster effects [26].

Now, an inquiry is made to authenticate the model’s strength in capturing this
clustering process. A boundary condition of the form

k(L, t) = k(0, t), u(L, t) = u(0, t)

is employed for this interrogation. The following initial profile (19) and the
fundamental equation (20) by [17] are adopted for this cluster analysis.

k(x,0) = ko +∆ko

{
cosh−2

[
160
L

(
x− 5L

16

)]
− 1

4
cosh−2

[
40
L

(
x− 11L

32

)]}
(19)
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(a) k0 = 0.17 (b) k0 = 0.22

(c) k0 = 0.24 (d) k0 = 0.28

(e) k0 = 0.35 (f) k0 = 0.39

Fig. 7. Space-time evolution of density after some perturbations

The steady state speed density equation is given as:

V (k(x, t)) = umax

{[
1+ exp

(
k/kmax−0.25

0.06

)]−1

−0.00000372

}
(20)

ko is the initial constant density and ∆ko = 0.1 veh/m is the amplitude of a local
disturbance. Except L = 40 km, all other parameters have the same connotation as in
section 4. The initial density ko will remain as a free parameter in order to quantize
the range for this cluster effects.
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From a zero reference point, this local effect is more evident by increasing
the initial density. Then, beyond a certain threshold value, the effect begins to
subside. We would observe a different cluster formation when the traffic con-
centration is between the values of 0.18 veh/m and 0.38 veh/m (Fig. 7b-7e). Outside
this range of values, any amplification dies-off (Fig. 7a and 7f). In essence, for light
and heavy flow, traffic realigns without further amplification. For moderate traffic,
we experience either a dipole or multiple cluster effect associated with start-and-go
traffic flow.

6. Conclusion

The paper presents a new continuum second-order traffic flow equation that
accounts for traffic viscosity on multi-lane highways. A new dynamic velocity
equation was derived from the two-dimensional Navier-Stokes equation. The
deduced equation was coupled with the classical LWR model to form the new
viscous macroscopic model. The proposed model and its classical form are observed
to have the same characteristic discriminant. The model was solved using an upwind
finite difference scheme. This numerical scheme was implemented along with
a Riemann initial condition and a Dirichlet boundary condition. Through the
simulation results, it was realized that increasing the viscous rate will gradually
cause the traffic to break down. A further simulation was carried out to determine
the local effect of a minute perturbation on a homogeneous flow. We realized that
the amplification of this displacement depends on the initial intensity of the traffic.
The traffic blow-up within a certain neighborhood of the critical density.
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