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Abstract. The objective of this study is to present a new modification of the reduced
differential transform method (MRDTM) to find an approximate analytical solution of
a certain class of nonlinear fractional partial differential equations in particular, nonlinear
time-fractional wave-like equations with variable coefficients. This method is a combination
of two different methods: the Shehu transform method and the reduced differential transform
method. The advantage of the MRDTM is to find the solution without discretization,
linearization or restrictive assumptions. Three different examples are presented to demon-
strate the applicability and effectiveness of the MRDTM. The numerical results show that
the proposed modification is very effective and simple for solving nonlinear fractional partial
differential equations.
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1. Introduction

The exact solutions and numerical solutions of the nonlinear fractional partial dif-
ferential equations play an important role in physical science and in engineering fields
such as viscoelasticity, fluid mechanics, acoustics, electromagnetism, diffusion, ana-
lytical chemistry, control theory, biology, and so on [1–14]. Consequently, there have
been attempts to develop new methods to obtain approximate analytical solutions
which converge to exact solutions. Among these methods are: the natural decompo-
sition method (NDM) [15], homotopy perturbation transform method (HPTM) [16],
homotopy analysis transform method (HATM) [17], optimal homotopy asymptotic
method (OHAM) [18], fractional variational iteration method (FVIM) [19], resid-
ual power series method (RPSM) [20]. In this paper, we present a new modifica-
tion of the reduced differential transform method (MRDTM) which is a combination
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of the Shehu transform method and the reduced differential transform method for
solving a certain class of nonlinear fractional differential equations. The advantage
of the MRDTM is to solve nonlinear fractional differential equations without using
any complicated polynomials like as the Adomian polynomials that are used in the
Adomian decomposition method (ADM) and He’s polynomials that are used in the
homotopy perturbation method (HPM).

Consider the following nonlinear time-fractional wave-like equations with vari-
able coefficients

Dα
t u =

n

∑
i, j=1

F1i j(X , t,u)
∂ k+m

∂xk
i ∂xm

j
F2i j(uxi ,ux j)

+
n

∑
i=1

G1i(X , t,u)
∂ p

∂xp
i

G2i(uxi)+H(X , t,u)+S(X , t), (1)

subject to the initial conditions

u(X ,0) = a0(X),ut(X ,0) = a1(X), (2)

where Dα
t is the Caputo fractional derivative operator of order α , 1 < α ≤ 2, u is

a function of (X , t) ∈ Rn×R+, F1i j,G1i i, j ∈ {1,2, ...,n} are nonlinear functions of
X , t and u, F2i j,G2i i, j ∈ {1,2, ...,n} , are nonlinear functions of derivatives of u with
respect to xi and x j i, j ∈ {1,2, ...,n}, respectively. Also H,S are nonlinear functions
and k,m, p are integers.

These types of equations are of considerable significance in various fields of ap-
plied sciences, mathematical physics, nonlinear hydrodynamics, engineering physics,
biophysics, human movement sciences, astrophysics and plasma physics. These equa-
tions describe the evolution of erratic motions of small particles that are immersed
in fluids, fluctuations of the intensity of laser light, and velocity distributions of fluid
particles in turbulent flows.

2. Definition and preliminaries

In this section, we define some basic definitions and properties of the fractional
calculus theory and the Shehu transform which shall be used in this paper.

Definition 1 [21] A real function f (t), t > 0, is considered to be in the space Cµ ,
µ ∈ R if there exists a real number p > µ, so that f (t) = t ph(t), where
h(t) ∈C ([0,∞[), and it is said to be in the space Cn

µ if f (n) ∈ Cµ , n ∈ N. 2
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Definition 2 [21] The Riemann-Liouville fractional integral operator Iα of order
α ≥ 0 for a function f ∈ Cµ ,µ ≥−1 is defined as follows

Iα f (t) =
1

Γ(α)

t∫
0

(t−ξ )α−1 f (ξ )dξ , t > 0. (3)

where Γ(.) is the well-known Gamma function. 2

Definition 3 [21] The Caputo fractional derivative operator of order n−1 < α ≤ n
for a function f ∈ Cn

−1 is defined as follows

Dα f (t) =
1

Γ(n−α)

t∫
0

(t−ξ )n−α−1 f (n)(ξ )dξ , t > 0. (4)

Definition 4 [22] The Shehu transform of the function f (t) of exponential order is
defined over the set of functions

A =

{
f (t)/∃N,η1,η2 > 0, | f (t)|< N exp

(
|t|
η j

)
, if t ∈ (−1) j× [0,∞)

}
, (5)

by the following integral

S [ f (t)] = F(s,v) =
∫

∞

0
exp
(
−st

v

)
f (t)dt, t > 0. (6)

Theorem 1 [23] Let n∈N∗ and α > 0 be such that n−1 < α ≤ n and F(s,v) be the
Shehu transform of the function f (t), then the Shehu transform denoted by Fα(s,v)
of the Caputo fractional derivative of f (t) of order α , is given by

S [Dα f (t)] = Fα(s,v) =
sα

vα
F(s,v)−

n−1

∑
k=0

( s
v

)α−(k+1) [
Dk f (t)

]
t=0

. (7)

3. Reduced differential transform method (RDTM)

In this section, we apply the reduced differential transform method (RDTM)
for (n+1)−variables function u(x1,x2, ...,xn, t) which has been developed in [24].

Consider a function u(x1,x2, ...,xn, t) of (n + 1)−variables and assume that it
can be represented as a product of (n+1) single-variable function, i.e.

u(x1,x2, ...,xn, t) = F1(x1)F2(x2)...Fn(xn)Fm(t). (8)

On the basis of the properties of the one-dimensional differential transform,
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the function u(x1,x2, ...,xn, t) can be represented as

u(x1,x2, ...,xn, t) =

(
∞

∑
k1=0

F1(k1)x
k1
1

)(
∞

∑
k2=0

F2(k2)x
k2
2

)
× ...

×

(
∞

∑
kn=0

Fn(kn)xkn
n

)
×

(
∞

∑
km=0

Fm(km)tkm

)

=
∞

∑
k1=0

∞

∑
k2=0

...
∞

∑
kn=0

∞

∑
km=0

U(k1,k2, ...,kn,km)x
k1
1 xk2

2 ...xkn
n tkm , (9)

where U(k1,k2, ...,kn,km) =F1(k1)×F2(k2)× ...×Fn(kn)×Fm(km) is called the spec-
trum of u(x1,x2, ...,xn, t).

Next, we assume that u(X , t),X = (x1,x2, ...,xn) is a continuously differentiable
function with respect to space variable and time in the domain of interest.

Definition 5 Let u(X , t), X = (x1,x2, ...,xn) be an analytic function, then the RDT of
u is given by

Uk(X) =
∞

∑
k=0

1
k!

[
∂ k

∂ tk u(X , t)
]

t=t0

. (10)

Here the lowercase u(X , t) represents the original function while the uppercase
Uk(X) stands for the reduced transformed function. 2

Definition 6 The inverse RDT of Uk(X) is defined by

u(X , t) =
∞

∑
k=0

Uk(X)(t− t0)k. (11)

Combining Eqs. (10) and (11), we have

u(X , t) =
∞

∑
k=0

1
k!

[
∂ k

∂ tk u(X , t)
]

t=t0

(t− t0)k. (12)

In particular, for t0 = 0, Eq. (12) becomes

u(X , t) =
∞

∑
k=0

1
k!

[
∂ k

∂ tk u(X , t)
]

t=0
tk. (13)

From the above definitions, the fundamental operations of the RDTM are given
by the following theorems.

Theorem 2 Let Uk(X),Vk(X) and Wk(X) be the fractional reduced differential trans-
form of the functions u(X , t),v(X , t) and w(X , t) respectively, then

(1) if w(X , t) = λu(X , t)+µv(X , t), then Wk(X) = λUk(X)+µVk(X), λ ,µ ∈ R.
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(2) if w(X , t) = u(X , t)v(X , t), then Wk(X) =
k

∑
r=0

Ur(X)Vk−r(X).

(3) if w(X , t) = u1(X , t)u2(X , t)...un(X , t), then

Wk(X)=
k

∑
kn−1=0

kn−1

∑
kn−2=0

...
k3

∑
k2=0

k2

∑
k1=0

U1
k1
(X)U2

k2−k1
(X)·...·Un−1

kn−1−kn−2
(X)Un

k−kn−1
(X).

(4) if w(X , t) =
∂ n

∂ tn u(X , t), then Wk(X) =
(k+n)!

k!
Uk+n,n = 1,2, .... 2

4. MRDTM for nonlinear time-fractional wave-like equations

u(X , t) =
∞

∑
k=0

Uk(X), (14)

where Uk(X) is the reduced differential transformed function of u(X , t). 2

PROOF In order to achieve our goal,we consider the following nonlinear
time-fractional wave-like equations with variable coefficients (1) subject to the initial
conditions (2).

Taking the Shehu transform on both sides of Eq. (1) subject to the initial condi-
tions (2) and using the Theorem 1, we get

S [u(X , t)] =
v
s

a0(X)+
(v

s

)2
a1(X)+

vα

sα
S [S(X , t)]

+
vα

sα
S

[
n

∑
i, j=1

F1i j(X , t,u)
∂ k+m

∂xk
i ∂xm

j
F2i j(uxi ,ux j)

+
n

∑
i=1

G1i(X , t,u)
∂ p

∂xp
i

G2i(vxi)+H(X , t,u)

]
. (15)

Applying the inverse Shehu transform on both sides of Eq. (15), we have

u(X , t) = L(X , t)+S−1

(
uα

sα
S

[
n

∑
i, j=1

F1i j(X , t,v)
∂ k+m

∂xk
i ∂xm

j
F2i j(vxi ,vx j)

+
n

∑
i=1

G1i(X , t,v)
∂ p

∂xp
i

G2i(vxi)+H(X , t,v)

])
, (16)

with variable coefficients

Theorem 3 Consider the following nonlinear time-fractional wave-like equations 
with variable coefficients (1) subject to the initial conditions ( 2). Then, by MRDTM, 
the approximate analytical solution of Eqs. (1) and (2) is given in the form of infinite 
series which converges rapidly to the exact solution as follows



50 A. Khalouta, A. Kadem

where L(X , t) is a term arising from the source term and the prescribed initial condi-
tions.

We now apply the reduced differential transform method to Eq. (16), and get

U0(X) = L(X , t), (17)

Uk+1(X) = S−1
(

uα

sα
S [Ak(X)+Bk(X)+Ck(X)]

)
,k ≥ 0, (18)

where Ak(X),Bk(X) and Ck(X) are a transformed forms of the nonlinear terms,

n

∑
i, j=1

F1i j(X , t,u)
∂ k+m

∂xk
i ∂xm

j
F2i j(uxi ,ux j),

n

∑
i=1

G1i(X , t,u)
∂ p

∂xp
i

G2i(uxi) and H(X , t,u).

From Eqs. (17) and (18), we have

U0(X) = L(X , t),

U1(X) = S−1
(

uα

sα
S [A0(X)+B0(X)+C0(X)]

)
,

U2(X) = S−1
(

uα

sα
S [A1(X)+B1(X)+C1(X)]

)
,

... �

Hence, the approximate analytical solution of Eqs. (1) and (2) is given as

u(X , t) =
∞

∑
k=0

Uk(X). (19)

5. Numerical examples

In this section, we consider three different examples of nonlinear time-fractional
wave-like equations with variable coefficients to demonstrate the applicability and
effectiveness of the MRDTM.

Example 1 Consider the following two-dimensional nonlinear time-fractional
wave-like equation with variable coefficients

Dα
t u =

∂ 2

∂x∂y
(uxxuyy)−

∂ 2

∂x∂y
(xyuxuy)−u,1 < α ≤ 2, (20)

subject to the initial conditions

u(x,y,0) = exy,ut(x,y,0) = exy, (21)

where u is a function of (x,y, t) ∈ R2×R+.
By applying the steps involved in the MRDTM, as presented in Section 4, to Eqs.
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(20) and (21), we have the following iteration formula

U0(x,y) = exy + texy, (22)

Uk+1(x,y) = S−1
(

uα

sα
S
(

∂ 2

∂x∂y
Ak(x,y)−

∂ 2

∂x∂y
Bk(x,y)−Uk(x,y)

))
, (23)

where Ak(x,y) and Bk(x,y) are a transformed forms of the nonlinear terms, uxxuyy and
xyuxuy. For the convenience of the reader, the first few nonlinear terms are as follows

A0 = U0xxU0yy,

A1 = U0xxU1yy +U1xxU0yy,

A2 = U0xxU2yy +U1xxU1yy +U2xxU0yy,

B0 = xyU0xU0y,

B1 = xyU0xU1y + xyU1xU0y,

B2 = xyU0xU2y + xyU1xU1y + xyU2xU0y.

From Eqs. (22) and (23), we obtain

U0(x,y) = (1+ t)exy,

U1(x,y) = −
(

tα

Γ(α +1)
+

tα+1

Γ(α +2)

)
exy

U2(x,y) =

(
t2α

Γ(2α +1)
+

t2α+1

Γ(2α +2)

)
exy,

...

Hence, the approximate analytical solution of Eqs. (20) and (21) is given as

u(x,y, t) =
(

1+ t− tα

Γ(α +1)
− tα+1

Γ(α +2)
+

t2α

Γ(2α +1)
+

t2α+1

Γ(2α +2)
− ...

)
exy.

(24)
Taking α = 2 in Eq. (24), we have

u(x,y, t) =

(
1+ t− t2

2!
− t3

3!
+

t4

4!
+

t5

5!
− ...

)
exy

= (cos t + sin t)exy, (25)

which is the same solution as obtained by using the FRPSM [25].
Example 2 Consider the following one dimensional nonlinear time-fractional

wave-like equation with variable coefficients

Dα
t u = u2 ∂ 2

∂x2 (uxuxxuxxx)+u2
x

∂ 2

∂x2 (u
3
xx)−18u5 +u,1 < α ≤ 2, (26)
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subject to the initial conditions

u(x,0) = ex,ut(x,0) = ex, (27)

where u is a function of (x, t) ∈ ]0,1[×R+.
By applying the steps involved in the MRDTM, as presented in Section 4, to Eqs.

(26) and (27), we have the following iteration formula

U0(x) = ex + tex, (28)

Uk+1(x) = S−1
(

uα

sα
S(Ak(x)+Bk(x)−18Ck(x)+Uk(x))

)
, (29)

where Ak(x), Bk(x) and Ck(x) are a transformed forms of the nonlinear terms,

u2 ∂ 2

∂x2 (uxuxxuxxx),u2
x

∂ 2

∂x2 (u
3
xx), and u5. For the convenience of the reader, the first few

nonlinear terms are as follows:

A0 = U2
0

∂ 2

∂x2 [U0xU0xxU0xxx] ,

A1 = 2U0U1
∂ 2

∂x2 [U0xU0xxU0xxx]+U2
0

∂ 2

∂x2 [U1xU0xxU0xxx

+U0xU1xxU0xxx +U0xU0xxU1xxx] ,

B0 = U2
0x

∂ 2

∂x2U3
0xx,

B1 = 2U0xU1x
∂ 2

∂x2U3
0xx +3U2

0x
∂ 2

∂x2

[
U2

0xxU1xx
]
,

C0 =U5
0 ,C1 = 5U4

0 U1.

From Eqs. (28) and (29), we obtain

U0(x) = (1+ t)ex,

U1(x) =

(
tα

Γ(α +1)
+

tα+1

Γ(α +2)

)
ex,

U2(x) =

(
t2α

Γ(2α +1)
+

t2α+1

Γ(2α +2)

)
ex,

...

Hence, the approximate analytical solution of Eqs. (26) and (27) is given as

u(x, t) =
(

1+ t +
tα

Γ(α +1)
+

tα+1

Γ(α +2)
+

t2α

Γ(2α +1)
+

t2α+1

Γ(2α +2)
+ ...

)
ex. (30)
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Taking α = 2 in Eq. (30), we have

u(x, t) =
(

1+ t +
t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ ...

)
ex = ex+t , (31)

which is the same solution as obtained by using the FRPSM [25].
Example 3 Consider the following one dimensional nonlinear time-fractional

wave-like equation with variable coefficients

Dα
t u = x2 ∂

∂x
(uxuxx)− x2(u2

xx)−u,1 < α ≤ 2, (32)

subject to the initial conditions

u(x,0) = 0,ut(x,0) = x2, (33)

where u is a function of (x, t) ∈ ]0,1[×R+.
By applying the steps involved in the MRDTM, as presented in Section 4, to Eqs.

(32) and (33), we have the following iteration formula

U0(x) = tx2, (34)

Uk+1(x) = S−1
(

uα

sα
S
(

x2 ∂

∂x
Ak(x)− x2Bk(x)−Uk(x)

))
, (35)

where Ak(x) and Bk(x) are a transformed forms of the nonlinear terms, uxuxx and u2
xx.

For the convenience of the reader, the first few nonlinear terms are as follows:

A0 = U0xU0xx,

A1 = U0xU1xx +U1xU0xx,

A2 = U0xU2xx +U1xU1xx +U2xU0xx,

B0 = U2
0xx,

B1 = 2U0xxU1xx,

B2 = 2U0xxU2xx +U2
1xx.

From Eqs. (34) and (35), we obtain

U0(x) = tx2,

U1(x) = − tα+1

Γ(α +2)
x2,

U2(x) =
t2α+1

Γ(2α +2)
x2,

...
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Hence, the approximate analytical solution of Eqs. (32) and (33) is given as

u(x, t) = x2
(

t− tα+1

Γ(α +2)
+

t2α+1

Γ(2α +2)
− ...

)
. (36)

Taking α = 2 in Eq. (36), we have

u(x, t) = x2
(

t− t3

3!
+

t5

5!
− ...

)
= x2 sin t, (37)

which is the same solution as obtained by using the FRPSM [25].

6. Numerical results and discussion

Figures 1, 3 and 5 show the surface graph of the exact solution and 3-term
approximate solutions by MRDTM at α = 1.7,1.8,2.

Fig. 1. 3D plots of the approximate solutions and exact solution for Eq. (20) when y = 0.5

Fig. 2. 2D plots of the approximate solutions and exact solution for Eq. (20) when x = y = 0.5

Figures 2, 4 and 6 show the behavior of the exact solution and 3-term approximate
solutions by MRDTM at α = 1.7,1.8,1.95,2. From these figures, we can confirm that
when α approaches to 2, the approximate solution obtained by MRDTM converges
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towards the exact solution. Tables 1, 2 and 3 show the comparison between the
FRPSM-approximate solutions (see [25]) and the obtained results by the MRDTM.
From these tables, we can see that the solution obtained by the MRDTM match well
with the FRPSM and coincide with the exact solution.

Table 1. Comparison of the FRPSM-approximate solution and the obtained results by the MRDTM
and the exact solution for Eq. (20) when x = y = 0.5 and α = 2

t uFRPSM uMRDT M uexact |uexact −uMRDT M |
0.1 1.4058 1.4058 1.4058 3.2196×10−13

0.3 1.6061 1.6061 1.6061 2.1569×10−9

0.5 1.7424 1.7424 1.7424 1.3095×10−7

0.7 1.8093 1.8093 1.8093 1.9680×10−6

0.9 1.8040 1.8040 1.8040 1.4947×10−5

Fig. 3. 3D plots of the approximate solutions and exact solution for Eq. (26)

Fig. 4. 2D plots of the approximate solutions and exact solution for Eq. (26) when x = 0.5
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Table 2. Comparison of the FRPSM-approximate solution and the obtained results by the MRDTM
and the exact solution for Eq. (26) when x = y = 0.5 and α = 2

t uFRPSM uMRDT M uexact |uexact −uMRDT M |
0.1 1.8221 1.8221 1.8221 4.1350×10−13

0.3 2.2255 2.2255 2.2255 2.7750×10−9

0.5 2.7183 2.7183 2.7183 1.6907×10−7

0.7 3.3201 3.3201 3.3201 2.5543×10−6

0.9 4.0552 4.0552 4.0552 1.9535×10−5

Fig. 5. 3D plots of the approximate solutions and exact solution for Eq. (32)

Fig. 6. 2D plots of the approximate solutions and exact solution for Eq. (32) when x = 0.5

Table 3. Comparison of the FRPSM-approximate solution and the obtained results by the MRDTM
and the exact solution for Eq. (32) when x = y = 0.5 and α = 2

t uFRPSM uMRDT M uexact |uexact −uMRDT M |
0.1 0.02496 0.02496 0.02496 6.8887×10−16

0.3 0.07388 0.07388 0.07388 1.3549×10−11

0.5 0.11986 0.11986 0.11986 1.3425×10−9

0.7 0.16105 0.16105 0.16105 2.7677×10−8

0.9 0.19583 0.19583 0.19583 2.6495×10−7
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7. Conclusions

In this paper, a new modification of the reduced differential transform method
(MRDTM) has been successfully applied to find approximate analytical solutions for
nonlinear time-fractional wave-like equations. The results shows that the MRDTM
is an efficient and easy to use technique for solving these types of equations.
The obtained approximate solution using the suggested method is in excellent agree-
ment with the exact solution. This confirms our belief that the efficiency of our
method gives it much wider applicability for general classes of nonlinear fractional
partial differential equations.
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