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Abstract. Slow axisymmetric flow of an incompressible viscous fluid caused by a slip
sphere within a non-concentric spherical cell surface is investigated. The uniform velocity
(Cunningham’s model) and tangential velocity reaches minimum along a radial direction
are imposed conditions at the cell surface (Kvashnin’s model). The general solution of the
problem is combined using superposition of the fundamental solution in the two spherical
coordinate systems based on the centers of the slip sphere and spherical cell surface. Numer-
ical results for the correction factor on the inner sphere are obtained with good convergence
for various values of the relative distance between the centers of the sphere and spherical
cell, the slip coefficient, and the volume fraction. The obtained results are in good agreement
with the published results. The effect of concentration is more in the Cunningham’s model
compared to the Kvashnin’s model. The wall correction factor on the no-slip sphere is more
compared to that of a slip sphere. The correction factor on the slip sphere is more than that
of a spherical gas bubble.
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1. Introduction

Several researchers have investigated the fluid flow past a solid particle with slip
condition at a fluid-solid interface due to the assumption of a no-slip boundary condi-
tion at the fluid-solid interface which is not valid in the case of micro and nano-fluidic
devices [1]. In real life applications, the solid particles are not isolated. They form
an assemblage of particles. The presence of a neighboring wall or a particle will
affect the movement of an inner particle significantly. It is very difficult to study this
type of problem due to complex geometry. The essence of the problem is to assume
a single particle in a cell and solve it. Ramkissoon and Rahaman [2] investigated
the slow motion of a spheroidal particle in a concentric spherical container using slip
at the surface of the particle. The different features of the hydrodynamic cell mod-
els are discussed by Zholkovskiy et al. [3]. Sherief et al. [4] solved the problem of
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steady translational motion of spherical or spheroidal particle in a cell model using
linear slip and microrotation slip conditions. Srinivasacharya and Krishna Prasad [5]
examined the Stokes flow past a porous approximate sphere fixed with a solid core
surrounded by a spherical envelope. Saad [6] discussed an application of Stokes flow
through a porous prolate and an oblate spheorid in cell models.

Gluckman et al. [7] proposed a boundary collocation method for slow viscous
flow past a finite assemblage of particles. Using this multipole truncation technique,
many researchers solved multi-particle interaction, particle-wall boundaries, and non-
-concentrated systems (Leichtberg et al. [8], Ganatos et al. [9,10], Keh and Lee [11]).
Faltas and Saad [12] investigated the slow motion of a slip sphere in an eccentric cell
using Happel and Kuwabara boundary conditions. Saad [13] discussed the analytical
solutions for the problems of slow flow of a micropolar fluid sphere past a viscous
fluid sphere and vice-versa. A series of research work is done by assuming the inner
particle as a solid or a porous filled with Newtonian fluid so that the center of the par-
ticle is located away from the center of the spherical cell [14–17]. Recently, Sherief et
al. [18] investigated the translational and rotational motion of a no slip sphere within
a non-concentric spherical cavity. Krishna Prasad [19] handled the problem of cell
models for non-Newtonian fluid past a semipermeable sphere. Tseng and Keh [20]
investigated the quasi-steady thermophoresis of an aerosol sphere located arbitrarily
in a spherical cavity normal to the line of their centers. Alouges et al. [21] studied the
motion of a solid particle in a bounded viscous flow using the Sparse Cardinal Sine
Decomposition.

The purpose of present paper is to fill the gap of literature with previous inves-
tigation of Faltas and Saad [12] by presenting the analytical and numerical study of
slow flow caused by a solid sphere with a slip flow surface moving in a viscous fluid
in an eccentric spherical cell using Cunningham’s (Mehta and Morse’s) [22, 23] and
Kvashnin’s [24] boundary conditions. The wall correction factor is calculated numer-
ically and it agrees with the analytical results of the concentric case. The effects of
dimensionless parameters are discussed in detail.

2. Mathematical statement

As depicted in Figure 1, consider the slow motion of a sphere with radius a
in an incompressible viscous fluid, surrounded by a non-concentric spherical cell
with radius b. The spherical cell is frictionless. The fluid comes near the cell sur-
face and past a sphere translating at a constant velocity U from the negative z-axis.
The particle volume fraction of the sphere is equal to the particle volume fraction
throughout the cavity (γ =η

3 where η =
a
b

is the separation parameter). Here (r,θ ,φ)

and (ρ,φ ,z), denote the spherical coordinate and circular cylindrical systems,
respectively.

The origin is fixed at the centre of spherical cell. The centre of the sphere is placed
at a distance d from the centre of the cell. Let (r1,θ1,φ1) and (r2,θ2,φ2) be the spher-
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ical coordinates based on the centre of a inner sphere and outer spherical cavity,
respectively. The relation between the radii of a sphere r1 and spherical cell r2 are
given by r2

1 = r2
2 +d2−2r2d cosθ2 or r2

2 = r2
1 +d2 +2r1d cosθ1.

Fig. 1. The physical situation of slip sphere in a non-concentric spherical hypothetical cell

The equations governing the motion are given by

∇ ·~V = 0, (1)

∇p+µ ∇×∇×~V = 0. (2)

where ~V, p are the velocity vector and fluid pressure at any point, and µ is the vis-
cosity coefficient.

The flow generated is axially symmetric and all the quantities are independent of
φ . Thus, one can take the velocity vector in the cylindrical coordinates as

~V = Vρ(ρ,z)~eρ +Vz(ρ,z)~ez (3)

Since ∇ ·~V = 0, one can represent the velocity components qρ and qz in terms of the
Stokes stream function as

Vρ =
1
ρ

∂ψ

∂ z
, Vz =−

1
ρ

∂ψ

∂ρ
(4)
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After elimination of pressure from (2), we get

E4
Ψ = 0, (5)

Where

E2 =
∂ 2

∂ρ2 −
1
ρ

∂

∂ρ
+

∂ 2

∂ z2 is the Stokesian operator.

For flow configuration, the boundary conditions along the surface of slip sphere
r1 = a [11, 12, 25].

λVρ = tr1θ1ξ1, (6)

λVz =−tr1θ1(1−ξ
2
1 )

1/2, (7)

Where ξ1 = cosθ1, tr1θ1 is the stress tensor for the flow, and λ is the slip coefficient.
The slip sphere behaves as spherical gas bubble if λ = 0 and slip sphere becomes no
slip sphere if λ → ∞.

On the spherical hypothetical cell surface r2 = b, the continuity of radial velocity
along with homogeneity of the flow and symmetry of the cell.

Vρ(1−ξ
2
2 )

1/2
ξ
−1
2 +Vz =−1, (8)

Cunningham’s (Mehta-Morse) model:

Vρξ2(1−ξ
2
2 )
−1/2−Vz = 1, (9)

Kvashnin’s model:

∂

∂ r

(
Vρ −Vz(1−ξ

2
2 )

1/2
ξ
−1
2

)
= 0. (10)

3. Solution of the problem

Using the principle of superposition, the stream function Ψ of the fluid flow in the
spherical coordinates is given by [11, 12, 25]

Ψ =
∞

∑
n=2

[(
An r−n+1

1 +Bn r−n+3
1

)
ϑn(ξ1)+

(
Cn rn

2 +Dn rn+2
2

)
ϑn(ξ2)

]
, (11)

where ξ1 = cosθ1, ξ2 = cosθ2, ϑn(·) is the Gegenbauer function of the first kind
of order n and degree −1/2. The unknown constants An, Bn, Cn, and Dn are to be
determined using boundary conditions Eqs. (6)-(10).

The expressions for the axial velocity Vρ , the radial velocity Vz, and the stress
tensor tr1θ1 are given by
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Vρ =
∞

∑
n=2

[An A1n(ζ1)+Bn B1n(ζ1)+CnC1n(ζ2)+Dn D1n(ζ2)] , (12)

Vz =
∞

∑
n=2

[An A2n(ζ1)+Bn B2n(ζ1)+CnC2n(ζ2)+Dn D2n(ζ2)] , (13)

tr1θ1 =
∞

∑
n=2

[An A3n(ζ1)+Bn B3n(ζ1)+CnC3n(ζ2)+Dn D3n(ζ2)] . (14)

Where the points ζ1 = (r1,θ1), ζ2 = (r2,θ2), the functions Akn, Bkn , Ckn and Dkn
with k = 1,2,3 are given in the Appendix.

For Cunningham’s model, the boundary conditions (6)-(9) are applied

∞

∑
n=2

[An A4n(ζ3)+Bn B4n(ζ3)+CnC4n(ζ4)+Dn D4n(ζ4)] = 0 (15)

∞

∑
n=2

[An A5n(ζ3)+Bn B5n(ζ3)+CnC5n(ζ4)+Dn D5n(ζ4)] = 0 (16)

∞

∑
n=2

[An A6n(ζ5)+Bn B6n(ζ5)+CnC6n(ζ6)+Dn D6n(ζ6)] =−1 (17)

∞

∑
n=2

[An A7n(ζ5)+Bn B7n(ζ5)+CnC7n(ζ6)+Dn D7n(ζ6)] = 1 (18)

where the points ζ3 = (1,θ1), ζ4 = [(r2,θ2)]r1=1, ζ5 = [(r1,θ1)]r2=
1
η

, ζ6 = (
1
η
,θ2)

and for Kvashnin model, Eq. (9) is replaced by Eq. (10)

∞

∑
n=2

[An A8n(ζ5)+Bn B8n(ζ5)+CnC8n(ζ6)+Dn D8n(ζ6)] = 0 (19)

where the functions Akn, Bkn, Ckn, and Dkn with k = 4,5,6,7,8 are given in the
Appendix.

To obtain the fully converged velocity components, the boundary conditions
(6)-(9) or (6)-(8) and (10) are to be fulfilled along the surface of slip sphere and outer
cell boundary. These equations constitute a set of linear equations with an infinite
number of unknown coefficients, and it cannot be solved. To overcome this difficulty,
the multipole collocation method is used. The infinite series should be truncated after
a finite number of terms N so that the number of the unknown coefficients becomes
finite. A finite number N of collocation points are to be chosen at both the slip sphere
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and spherical hypothetical cell so that one can have same number of linear equa-
tions and unknown coefficients. To achieve the desired accuracy, a large number of
collocation points are used.

4. Drag on the slip sphere

The drag force can be calculated by using the formula

F = π µ a
∫

π

0
r3 sin3

θ
∂

∂ r

(
E2Ψ

r2 sin2
θ

)
r
∣∣∣∣
r=1

dθ =−4π µ aU B2 (20)

The Eq. (20) indicates that B2 contributes to the hydrodynamic force experienced
by the slip sphere. The expression B2 is the lowest order coefficient. The value of B2
is the most precise and quickest convergent result.

If the cell surface is absent i.e.,
a

(b−d)
= 0, the fluid is unbounded. The drag

acting on a slip sphere in a viscous fluid is given as

F∞ =−6π aU µ

[
λ1 +2
λ1 +3

]
, (21)

Where λ1 = λ a/µ .

Using Eqs. (20) and (21), the wall effect W for the slow flow of slip sphere is
given by

W =
F

F∞

. (22)

In the absence of a hypothetical cell surface, W = 1.
The solution for the slow motion of a slip sphere located at the center of a spherical
hypothetical cell for both models are
Cunningham’s model:

WCu =−
[

λ1 +3
λ1 +2

] [
(λ1−3)γ5/3− (λ1 +2)

][
(λ1−3)γ2− 9

4(λ1−2)γ5/3 + 5
2 γλ1− 9

4(λ1 +2)γ1/3 +(λ1 +3)
]

(23)
Kvashnin’s model:

WKv =−
[

λ1 +3
λ1 +2

] [
(λ1−3)γ5/3 +4(λ1 +2)

][
2(λ1−3)γ2− 9

4(λ1−2)γ5/3− 5
2 γλ1 +

27
4 (λ1 +2)γ1/3−4(λ1 +3)

]
(24)
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no slip λ1→ ∞ perfect slip λ1→ 0

WCu =−
1− γ5/3

γ2− 9
4 γ5/3 + 5

2 γ− 9
4 γ1/3 +1

WCu =−
1+ 3

2 γ5/3

γ2− 3
2 γ5/3 + 3

2 γ1/3−1

WKv =−
4+ γ5/3

2γ2− 9
4 γ5/3− 5

2 γ + 27
4 γ1/3−4

WKv =−
1+ 3

8 γ5/3

1
2 γ2− 3

8 γ5/3− 9
8 γ1/3 +1

5. Numerical results

To obtain the numerical solution of the wall correction factor W for a slip sphere
translating within a spherical cell, choose the boundary collocation points along the
half-circular generating arcs of the slip sphere and spherical cell. The initial point
θi = 0 and the terminal point θi = π are chosen along with the point θi = π/2 on
both the arcs. If these three points are used in the system (15)-(17), Eq. (18) and
(19) for Cunningham’s and Kvashnin’s models, respectively, the coefficient matrix
becomes a singular matrix. To avoid this difficulty and achieve good accuracy, the
method recommended in literature [7, 9–12] is used. The adjacent points of θi = 0,
π/2, π are θi = ε , θi = π/2−ε , θi = π/2+ε , θi = π−ε where ε is a specified value
(ε = 0.01o) and is chosen so that the coefficient matrix is nonsingular. Divide the
two quarter-circular arcs into equal segments so that additional points are selected as
mirror-image pairs about θi = π/2. Choosing a finite number of discrete points on
the arcs results in a system of linear equations. This system is solved by using the
Gaussian elimination method.

Table 1. Convergence of the Wall correction factor W for different values of δ , γ , and λ

W

δ N λ1 = 1 λ1 = 10 λ1 = 1 λ1 = 10
γ = 0.5 γ = 0.9 γ = 0.5 γ = 0.9

0.6 6 13.518643 1698.395542 141.649642 36754.084995
10 11.964950 1306.732609 93.319030 16392.267391
14 11.965407 1307.992201 93.036636 16539.270357
18 11.965422 1307.996379 93.038305 16540.751912
22 11.965422 1307.996398 93.038314 16540.761573
26 − 1307.996398 93.038314 16540.761659
30 − − − 16540.761662
34 − − − 16540.761662
36 − − − −

The impact of the slip parameter λ1 = λa/µ , normalized deviation distance of the

center of slip sphere from the center of spherical cell δ =
d

b−a
, volume fraction

γ = η
3 on the wall correction factor W are presented in Figure 2a and 2b, and Tables

2 and 3. The convergence of the numerical results for the wall correction factor
W is tested and tabulated in Table 1. All the numerical values are accurate to at



66 K.P. Madasu

least six decimal places. Figure 2a demonstrates that W is increasing function of γ

Table 2. Cunningham’s model: Wall correction factor WCu for different values of δ , γ , and λ

WCu

δ γ λ1→ 0 λ1 = 1 λ1 = 10 λ1→ ∞

0.00001 0.001 1.176469 1.202104 1.259094 1.286193
0.1 3.16586 3.542381 4.844169 5.852977
0.5 46.1306 47.812792 70.535256 125.257459
0.9 11576.44699 10564.3528 10426.576597 31322.214682

0.25 0.001 1.184106 1.212312 1.275391 1.305576
0.1 3.219083 3.620338 5.045277 6.20142
0.5 48.87828 50.475502 74.183503 135.018724
0.9 12376.295164 11283.70343 11071.959217 33835.488861

0.5 0.001 1.224763 1.260879 1.343113 1.383221
0.1 3.422713 3.913382 5.814358 7.609405
0.5 59.830182 61.004396 88.174728 174.802337
0.9 15564.382983 14147.743805 13618.928582 44087.677691

and becomes infinite as γ approaches to 1 for fixed values of δ and λ1. The wall
correction factor exerted on the slip sphere by the fluid increases with an increase in
the slip parameter λ1. The effect of concentration is more in the Cunningham’s model
compared to the Kvashnin’s model. For specified values of γ and δ , the wall effect
on the no-slip sphere is more compared to that of a slip sphere. The correction factor
on the slip sphere is more than that of a spherical gas bubble. Figure 2b illustrates

(a) For different values of λ with δ = 0.25 (b) For different values of the parameter δ

with slip parameter λ = 10

Fig. 2. Variation of W versus γ
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that W increases monotonically with an increase in δ , for any fixed values of γ and
λ1. The numerical values of the W are presented in Tables 1 and 2 for Cunningham’s
model and Kvashnin’s model, respectively. If δ → 0, the center of a slip sphere and
spherical hypothetical cell coincide, and the problem is reduced to translation of a
slip sphere in a concentric spherical container.

In Tables 2 and 3, the numerical values of W for δ → 0 agree with analytical solu-
tions (23) and (24). Comparing the present tabular values with given data in the work
by Faltas and Saad [12], the wall correction factor decreases in the following direc-
tion from Cunningham’s model, to Kuwabara’s model [12], Kvashnin’s model and
Happel’s model [12]. The wall correction factor is higher for Cunningham’s model
when compared with other cell models. The behaviour of flow parameters is the same
in all four models.

Table 3. Kvashnin’s model: Wall correction factor WKv for different values of δ , γ , and λ

WKv

δ γ λ1→ 0 λ1 = 1 λ1 = 10 λ1→ ∞

0.00001 0.001 1.126761 1.144696 1.183833 1.202097
0.1 2.089392 2.329996 3.041432 3.510962
0.5 7.737922 10.320974 22.853293 42.62212
0.9 162.526198 268.824419 1032.777179 8189.195994

0.25 0.001 1.131892 1.151292 1.193783 1.213688
0.1 2.103138 2.35818 3.126784 3.649964
0.5 7.868034 10.549205 23.728373 45.53468
0.9 167.36303 277.372406 1070.083372 8864.609211

0.5 0.001 1.156683 1.180622 1.233649 1.258784
0.1 2.14934 2.456677 3.443746 4.191274
0.5 8.327333 11.363381 26.933211 57.316415
0.9 184.82683 308.298498 1205.58458 11642.401731

6. Conclusion

In this work, the slow motion of a slip sphere in a spherical hypothetical cell is
studied analytically and numerically by using the multipole collocation technique.
The wall effect of a slip sphere is calculated for different values of the slip parameter,
volume fraction of the dispersed system, and the normalized deviation distance of
the center of slip sphere from the center of spherical hypothetical cell. The results
show that the solution procedure converges rapidly for a greater number of colloca-
tion points. It is observed that the wall factor is an increasing function of the slip
parameter, normalized deviation distance between centers of the slip sphere and the
cell surface, and volume fraction. The boundary effect is minimal when the particle
located at center of hypothetical cell and increases as the distance between the center
of slip sphere located away from the center of cell surface. It is found that the wall
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effect on the no-slip sphere is more compared to that of a slip sphere and the effect
on the slip sphere is more compared to that of a spherical gas bubble.
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Appendix A

A1n(ζ ) =− r−n−1Q1, where Q1 = (n+1)ϑn+1(ξ )(1−ξ
2)−1/2 (A.1)

B1n(ζ ) =− r−n+1 (Q1−2Q2) , where Q2 = ϑn(ξ )ξ (1−ξ
2)−1/2 (A.2)

C1n(ζ ) =− rn−2 (Q1− (2n−1)Q2) , (A.3)

D1n(ζ ) =− rn (Q1− (2n+1)Q2) , (A.4)

A2n(ζ ) =− r−n−1Pn(ξ ), (A.5)

B2n(ζ ) =− r−n+1 [2ϑn(ξ )+Pn(ξ )] , (A.6)

C2n(ζ ) =− rn−2 [(2n−1)ϑn(ξ )+Pn(ξ )] , (A.7)

D2n(ζ ) =− rn [(2n+1)ϑn(ξ )+Pn(ξ )] , (A.8)

A3n(ζ ) = 2(n2−1)r−n−2
ϑn(ξ )(1−ξ

2)−1/2, (A.9)

B3n(ζ ) = 2n(n−2)r−n
ϑn(ξ )(1−ξ

2)−1/2, (A.10)

C3n(ζ ) = 2n(n−2)rn−3
ϑn(ξ )(1−ξ

2)−1/2, (A.11)

D3n(ζ ) = 2(n2−1)rn−1
ϑn(ξ )(1−ξ

2)−1/2, (A.12)

A4n(ζ ) = A1n(ζ )−λ
−1
1 ξ1A3n(ζ ), (A.13)

B4n(ζ ) = B1n(ζ )−λ
−1
1 ξ1B3n(ζ ), (A.14)

C4n(ζ ) = C1n(ζ )−λ
−1
1 ξ1C3n(ζ ), (A.15)

D4n(ζ ) = D1n(ζ )−λ
−1
1 ξ1D3n(ζ ), (A.16)

A5n(ζ ) = A2n(ζ )+λ
−1
1 (1−ξ

2
1 )

1/2A3n(ζ ), (A.17)
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B5n(ζ ) = B2n(ζ )+λ
−1
1 (1−ξ

2
1 )

1/2B3n(ζ ), (A.18)

C5n(ζ ) = C2n(ζ )+λ
−1
1 (1−ξ

2
1 )

1/2C3n(ζ ), (A.19)

D5n(ζ ) = D2n(ζ )+λ
−1
1 (1−ξ

2
1 )

1/2D3n(ζ ), (A.20)

A6n(ζ ) = A1n(ζ )(1−ξ
2
2 )

1/2
ξ
−1
2 +A2n(ζ ), (A.21)

B6n(ζ ) = B1n(ζ )(1−ξ
2
2 )

1/2
ξ
−1
2 +B2n(ζ ), (A.22)

C6n(ζ ) = C1n(ζ )(1−ξ
2
2 )

1/2
ξ
−1
2 +C2n(ζ ), (A.23)

D6n(ζ ) = D1n(ζ )(1−ξ
2
2 )

1/2
ξ
−1
2 +D2n(ζ ), (A.24)

A7n(ζ ) = A1n(ζ )ξ2(1−ξ
2
2 )
−1/2−A2n(ζ ), (A.25)

B7n(ζ ) = B1n(ζ )ξ2(1−ξ
2
2 )
−1/2−B2n(ζ ), (A.26)

C7n(ζ ) = C1n(ζ )ξ2(1−ξ
2
2 )
−1/2−C2n(ζ ), (A.27)

D7n(ζ ) = D1n(ζ )ξ2(1−ξ
2
2 )
−1/2−D2n(ζ ), (A.28)

A8n(ζ ) =
∂

∂ r

(
A1n(ζ )−A2n(ζ )(1−ξ

2
2 )

1/2
ξ
−1
2

)
,

=(n+1)r−n−2 (Q1−Q3) where Q3 = Pn(ξ )(1−ξ
2
2 )

1/2
ξ
−1
2 (A.29)

B8n(ζ ) =
∂

∂ r

(
B1n(ζ )−B2n(ζ )(1−ξ

2
2 )

1/2
ξ
−1
2

)
,

=(n−1)r−n (Q1−2Q2− (Q3 +2Q4)) where Q4 = ϑn(ξ )(1−ξ
2
2 )

1/2
ξ
−1
2

(A.30)

C8n(ζ ) =
∂

∂ r

(
C1n(ζ )−C2n(ζ )(1−ξ

2
2 )

1/2
ξ
−1
2

)
,

=− (n−2)rn−3 (Q1− (2n−1)Q2−Q3− (2n−1)Q4) , (A.31)

D8n(ζ ) =
∂

∂ r

(
D1n(ζ )−D2n(ζ )(1−ξ

2
2 )

1/2
ξ
−1
2

)
,

=−nrn−1 (Q1− (2n+1)Q2−Q3− (2n+1)Q4) (A.32)

where ζ = (r,θ), ξ = cosθ .


