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Abstract. The model of a plate brittle material reinforced with randomly sized and placed 
rigid rectilinear inclusions that do not interact with each other is considered. The geometric 
parameters of inclusions (length and orientation) are statistically independent random vari-
ables, with certain given laws of probability distribution. Diagrams of statistical strength 
criterion for such plates are constructed under conditions of comprehensive tension-com-
pression. The diagrams are constructed for plates using a material of a different structural 
inhomogeneity and Poisson’s ratio of an elastic homogeneous matrix. The statistical nature 
of the scale effect is studied, the intensity of which depends on the type of stress state. 
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1. Introduction 

The study of the strength and reliability of construction elements with structural 
inhomogeneity of materials, which may be caused by extraneous inclusions, is an 
urgent task in the mechanics of composite materials. An important step in studying 
the stress state and the failure of construction elements under a given load is their 
probabilistic estimation. Defects in the structure of a material, and therefore its 
strength, are always random variables. Therefore, the use of probability-statistical 
methods is a prerequisite for calculating the reliability of materials. The complex 
application of these methods and the well-known deterministic solutions of material 
fracture mechanics make it possible to obtain more accurate models of the strength 
criteria of machine parts and construction elements under different loading condi-
tions. The application of probabilistic-statistical methods in predicting the reliabil-
ity of materials with structural inhomogeneity has been developed in the works of  
a number of authors. In paper [1], the reliability calculation of composite material 
using a variety of approximation methods is described and illustrated. Article [2] 
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presents a methodology for reliability assessment of composite members based on 
appropriate limit state functions derived according to fundamental failure criteria, 
applicable to composite materials. A two-dimensional finite element simulation- 
-based approach was developed [3] to assess the fracture statistics of isotropic micro- 
structures. An analytical approach with the help of numerical simulations based on 
the equivalent constraint model was proposed [4] to investigate the progressive 
failure behavior of symmetric fiber-reinforced composite laminates damaged by 
transverse ply cracking. A modified Weibull failure probability model that consid-
ers the impact of compressive stress on cladding failure probability is deduced in 
detail [5]. In study [6], reliability analysis of tensile strengths using Weibull distri-
bution in glass/epoxy and carbon/epoxy composites is carried out. In article [7],  
the expressions for the probabilities density distribution of failure loading for  
an elastic isotropic body under the action of a homogeneous axisymmetric loading 
are written. The correlation for finding the most probable, mean value, dispersion 
and variation coefficient of failure loading is obtained. In this work, the application 
of an integrated approach based on the provisions of fracture mechanics of materi-
als and methods of the theory of probability to reinforced composite materials is 
continued. 

The purpose of this study is to construct and analyze diagrams of the statistical 
criterion for the strength of a brittle material plate, in which stochastically random 
rigid linear (rod) inclusions are distributed under different loading conditions. 

2. Formulation of the problem 

Consider a brittle rectangular plate under conditions of comprehensive tensile- 
compression in two mutually perpendicular directions with uniform loading P  and 
Q P  (Fig. 1). Rigid rod N  inclusions that do not interact with each other are 
evenly distributed in it. The values P  and Q  will be considered as the main stress-

es for a plane stress state. The inclusions are characterized by the length 2l 

(0 2l c  , c  is a finite structural characteristic) and the angle   of their inclina-
tion ( / 2 / 2     ) relative to the direction of force action P . The parameters 
  and l  are statistically independent random variables. 

To describe the random variable l , we use the beta distribution [8], the density 
of which 

 
1

( ) (1 / )


  rr
f l l c

c
. (1) 

It is an important statistical model for random variables whose values are limited 
by a finite interval. The parameter 0r   characterizes the structure of the material. 
With 0r  , the beta distribution turns into a uniform distribution. For 1r  , a line-
arly decreasing distribution is obtained. In the case 0r  , with an increase in the 
parameter r , the probability of encountering random variables close to zero is 
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greater, and the lower the probability of encountering large values of a random  
variable. Therefore, by increasing r , the inclusions of small size are more likely. 

Then the integral distribution function of a random variable l  can be written as 

 1( ) 1 (1 / )    rF l l c . (2) 

To describe the random variable  , we use the density of a uniform probability 
distribution 
 ( ) 1/f   . (3) 

 
Fig. 1. Plate with inclusions under conditions of comprehensive tensile-compression 

In article [9], the expressions of the failure loading distribution function 1( , )F P   

of a plate element with one inclusion of the specified type were obtained for differ- 
ent ratios of the applied loading. These expressions were obtained using the integral 
distribution function of a random variable l  (2), the uniform distribution density of 
the random variable   (3), and deterministic fracture conditions in the vicinity of 
the inclusion [10]. Substitute the expressions 1( , )F P   into the equation of the  
statistical strength diagram for the plate with N  inclusions, which is recorded in 
the mean values of the failure loading [10] 

  
max

min

( )

min 1

( )

( ) 1 ( , )  
P

N

P

P P F P dP





  ,  Q P . (4) 

This strength diagram depends on the distribution law of the size of inclusions 
(parameter r), the nature of the stress state (parameter  ), plate dimensions  

(we consider the number of inclusions N  proportional to the plate area) and the 
Poisson’s ratio   of the plate material. 
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We replace the variables 
2
0

2

K
x

P c
  (the constant 0K  characterizes the resistance 

of the material to local failure [10]). We obtain the following expressions for the 

mean value of the failure loading (we write it as a dimensionless value 0P c K ) 

for different types of applied loading: 
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4) for the case  1 æ
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The following notation is used here: 
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The limits of integration are defined as follows: 
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We find the dimensionless mean value of the failure loading second component 

0Q c K  according to expression (4). 

In article [9], the following partial cases of loading of a plate with N  rigid rod 
inclusions are considered: uniaxial tension ( 0  ), biaxial symmetric tension 

( 1  ) and biaxial symmetric tension-compression ( 1   ). 

The dependences of the failure loading mean value P  on the parameters r 

and N  on the fixed   and æ will be similar to those of plates with defects-cracks 

[10, 11]. The dependence P  on the   will be different not only because of the in- 

fluence of the parameter r , but also because of the influence of the Poisson’s ratio 
  of the matrix. Let’s show this in more detail by comparing a two-axis symmetric 

tension with a uniaxial tension. 

Introduce the notation 
1 0

P P
 


 

  and make the appropriate calcula- 

tions. Figure 2 shows the dependence of the value   on the parameter r  and the 
Poisson’s ratio   (at a fixed value 50N  ). For plates with cracks, the curves of 

such dependencies with increasing parameter r  are asymptotically directed to one 
[10], which corresponds to the case of a completely homogeneous material. This 
pattern for the plates with inclusions is not traceable. With increasing r  values   
go to some boundary that depends on  . 

 

 

Fig. 2. Dependence of parameter   on material characteristics r  and   
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3. Statistical diagrams of composite materials 

Consider constructing statistical strength diagrams of plates with stochastically 
distributed rigid rod inclusions recorded in the mean values of the failure loading  
in accordance with expressions (4)-(9). 

In Figure 3, the diagrams for the case of choosing the probability density of  
a random variable l  distribution in the form of a linearly decreasing law 

2
( ) (1 / )f l l c

c
   (according to the expression (1)) are considered. This distribu- 

tion probability density reflects the following property: the longer the inclusion,  
the less likely it will occur in the material. Strength diagrams are constructed  
for plates with a different number N  of inclusions and different values of the  
Poisson’s ratio   of the plate material. 

 

 
Fig. 3. Strength diagrams for different number of inclusions 

(solid lines for 0.3 , dashed lines for 0.1 ) 

Figure 4 shows the statistical strength diagrams of plates with fixed sizes 
( 100N  ) and different structural inhomogeneity of the material (parameter r ). 

According to the choice of the uniform probability distribution density of the 
random variable   (3), the constructed strength diagrams are symmetric about  
the straight line Q P . 
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Fig. 4. Strength diagrams for different material structural inhomogeneity 

(solid lines for 0.3 , dashed lines for 0.1 ) 

4. Conclusions 

The strength diagrams for different inclusions (Fig. 3) indicate the scale effect 
of the plates strength. As the number of inclusions N  (the size of the plate) increases, 
a scale effect that is statistical in nature is manifested. The intensity of the scale  
effect does not depend on the type of stress state, as evidenced by the similarity  
of curves of mean strength, which correspond to the same parameters   and r  
at a different number of inclusions (at different plate sizes). With a decrease in the 
Poisson’s ratio of the plate material, the mean value of the failure loading decreases. 
The magnitude of the reduction in the failure loading depends on the type of stress 
state and is significant in the region of prevailing compression. Figure 4 shows the 
effect of changes in the structural inhomogeneity of the material on the mean value 
of the failure loading. The strength of the specimen increases with increasing of 
value r  at constant plate sizes. This pattern can be explained by the increase in  
the uniformity of the material (the physical content of the parameter r ). Also,  
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the strength of the composite is affected by the complication of the stress state.  
The effect of the Poisson’s ratio on the change in the shape of the mean strength 
curves is negligible. 
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