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Abstract. In this article, using the standard reductive perturbation technique (RPT) to the
basic governing equations for plasma comprising stationary ions, cold electrons and hot
electrons abiding by vortex-like distribution, nonplanar Schamel Burger (NSB) equations is
derived. In order to study the propagating properties of Electron acoustic (EA), progressive
wave solution is obtained by employing the weighted residual method (WRM). Most of the
observations of the EA wave are limited to the plasma environment where the effects of
viscosity, collisions, ion streaming velocity are totally neglected. In our present observation,
propagation of EA waves in a viscous plasma is described considering a weak damping (by
adding a Burgers term) due to the inner particle collision and viscosity. Special attention has
been given to study the impact of the other physical parameters in wave propagation in the
framework of the Schamel Burgers medium.
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1. Introduction

Over the last few decades, research works on plasma physics have become highly
interesting to the researchers of this field due to their wide applications in many nat-
ural phenomena and in different space environments. For the first time, nonlinear
phenomena in wave propagation are described using a mechanical analogy in the
work of Sagdeev [1]. In 1970, Ikezi et al. [2] initiated an investigation experimentally
for observing the behaviors of wave propagation in a plasma environment. Actu-
ally, different experimental observations of our universe created a lot of interest in
the theory of plasma. In order to understand our early universe [3], we should have
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sufficient knowledge on plasma. Also, from the astronomical observations, it has
been confirmed that the plasma extensively exists in active galactic nuclei, the pulsar
magnetosphere and the solar atmosphere [4].

In 1995, D’Angelo [5] observed that high-frequency acoustic waves (static
particles) and low-frequency dust acoustic waves (mobile dusty particles) can be
generated in a plasma medium. Using Kortewegde Vries (KdV) and modified KdV
equations, Dubuloz et al. [6] investigated the propagation of solitary waves in both
ion acoustic and dust acoustic plasmas using traditional RPT. Subsequently, large
numbers of experimental as well as theoretical works have been carried out by sev-
eral mathematicians and physicists to observe the propagating characteristics of ion
acoustic as well as dust ion acoustic waves in plasma system [7–9]. KdV equation and
its family are world-renowned because their solutions can explain a number of non-
linear phenomena and structures occurring in different fields of research, for example,
fluids, plasma, optics, etc. One of the prominent and most notable waves derived from
KdV is called solitary waves (solitons). Such waves emerge because of the equality
between the nonlinearity and the consequence of dispersion. These waves are there-
fore used to relay information because of their stationary profile after a collision in
fiber optic transmissions. In comparison to solitons in energy storage systems, when
the soliton is dissipated or damped, all of their characteristics are found to change
and decay as time passes [10,11]. A large class of theoretical as well as experimental
studies have been carried out in different plasma environments, and it is noticed that
the evolution of soliton-like solutions in the dissipative systems significantly depend
on on certain physical parameters of that medium [12].

In 2011, Pakzad [14] found that there exists a substantial phase shifting in the
plasma when the Maxwellian electrons are changed to the non-Maxwellian electron.
It is also observed that the phase shift enhances due to the enhance in the ratio of
temperatures of hot and cold electron. Moreover, the phase shift is higher in cylin-
drical EA than in the spherical one. Pakzad showed in [14] that the geometry and
nonextensive distribution of hot electrons have changed the width and amplitude of
EA in plasma comprising the hot and cold electron population. Recently Demiray et
al. [15] had studied on plasma taking the cold electron and hot electron with vortex
distribution. Motivated by their works, we intend to find the dissipation effect in the
present plasma environment due to the ion viscosity.

However, if the plasma is comprised of stationary ions, cold electrons and hot
electrons satisfying trapped or vortex type distribution, then the fractional-order non-
planar KdV equation arises instead of the conventional integer order nonplanar KdV
equation [16]. It is found that the standard techniques described in the references [13]
cannot reduce the classical KdV equation from the fractional one. In this connection,
some challenging attempts have been taken by several authors to find a series solu-
tion for that type of evolution equation. Thus, due to their large interpretations, many
enigmatic phenomena which have not been explained before became one of the main
concerns of many mathematicians and physicists, which can be solved by various
analytical methods [17,18]. In addition, many approximate methods can be employed
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to solve the linear and non-linear differential equations, namely the Adomian decom-
position method [19], the residual Galerkin weightage method [20] and the varia-
tional iteration method [21]. Dubouloz et al. [6] studied the characteristic of the IAW
solitary wave profile in a one dimensional collisionless plasma system composed of
stationary ions, electron fluid and Maxwellian hot electrons. But it is assumed that
the phase space holes formed because of trapping in a wave potential and thus the
distribution cannot be adopted by hot electrons. In general, the hot electrons in space
plasmas follow the vortex (trapped) like distribution [15, 22] in most of the cases.
Recently, a nonplaner EA wave has been studied considering the plasma environ-
ment model by neglecting different significant effects such as viscosity, collisions, ion
streaming velocity etc [17, 18]. But some remarkable results given in [23] show that
characteristic of wave propagation significantly changed due to the above-mentioned
effects. Being aware of the fact that effect of Burgers term in nonplanar Schamel
Burgers framework is not considered in earlier works, cylindrical as well as spherical
Schamel Burgers equations are derived from the field equation of a dissipative plasma
system using RPT. To observe the nonlinear evolution of IAW in this present system,
for the first time a new type of progressive wave solution for the NSB equation is
explored by employing the Weighted Residual Method.

2. Mathematical modeling and governing equations

We assume a homogeneous system with a collisionless plasma comprising of
a fluid of cold electrons and hot electrons following distribution of trapped/vortex-
like, and stationary ions. The basic one-dimensional governing equations with the
aid of the non-dimensionalized variable are structured as follows:

∂n
∂ t

+∇.(nv) = 0, (1)

∂v
∂ t

+(v.∇)v = α∇ψ +ζ ∇
2v, (2)

∇
2
ψ =

1
α

n+nh−
(

1+
1
α

)
. (3)

Where, n(nh), v and ψ noted as the number of cold (hot) electron density, velocity
of cold electron fluid and potential electrostatic wave which are non-dimensionalize
by n0(nh0), Ce = (kBTh/αm)1/2 and kBTh = e respectively, with α = nh0/n, where
the m, e and kB are noted as electron mass, magnitude of electron charge and the
Boltzmann constant. β signifies the measure of the inverse temperature of the trapped
electron. Moreover, the density of hot electron number, nh (for β < 0) is formualized
by Schamel as
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nh = I(ψ)+
2√
−πβ

WD(
√

βψ) (4)

with,

I(x) = [1− er f (
√

x)]exp(x) (5)

and,

WD = exp(−x2)
∫ x

0
exp(y2)dy (6)

For more generalizations, see the work of Schamel [24]. For ψ < 1, the hot electron
density can be expressed as follows:

nh = 1+ψ− 4
3
√

π
(1−β )ψ3/2 +

ψ2

2
− 8

15
√

π
(1−β

2)ψ5/2 +
ψ3

6
+ · · · (7)

For such plasma, in the present work, we have considered the axially symmetric
waves in the case of cylindrical and spherical behavior, which are formualized as:

∂n
∂ t

+
1

Rµ

∂ (Rµnv)
∂R

= 0, (8)

∂v
∂ t

+ v
∂v
∂R

= α
∂ψ

∂R
+ζ

[
1

Rµ

∂

∂R

(
Rµ ∂v

∂R

)]
, (9)

1
Rµ

∂

∂R

(
Rµ ∂ψ

∂R

)
=− 1

α
+

n
α
+ψ− 4

3
√

π
(1−β )ψ3/2 + · · · (10)

where µ = 1(µ = 2) presents the cylindrical (spherical) waves.
Using the reductive perturbation theory, the asymptotic analysis with the aid of

equations [8-10] have been done by introducing the slow stretched co-ordinates:

ξ = ε
1
2 (R− t),τ = ε

3
2 R, (11)

and the field variables can be written in the form of power series:

n = 1+ ε
2(n1 + εn2 + · · ·) (12)

ψ = ε
2(ψ1 + εψ2 + ε

2
ψ3 + · · ·) (13)

v = ε
2(v1 + εv2 + ε

2v3 + · · ·) (14)

We assume a weak damping state in this plasma environment considering ion kine-
matic viscosity, which leads to

ζ ≈ ε
1
2 ζ0 (15)
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We substitute the above expansions given by Eqs. (12)-(15) along with stretching
coordinates (Eq. (11)) in Eqs. (8)-(10) and considering the coefficients of different
power of ε starting from lower one), we get

n1 = v1, (16)

∂n2

∂ξ
− ∂v2

∂ξ
− µv1

τ
− ∂v1

∂τ
= 0, (17)

v1 =−αψ1 (18)

∂v2

∂ξ
+α

∂ψ1

∂τ
+α

∂ψ2

∂ξ
+ζ0

∂ 2v1

∂ξ 2 = 0, (19)

n1 =−αψ1, (20)

∂ 2ψ1

∂ξ 2 −ψ2−
n2

α
+

4
3
√

π
(1−β )ψ

3/2
1 = 0. (21)

Using the above results and writing ψ1 = φ , one can easily derive the following
cylindrical and spherical Schamel-Burgers equation:

∂φ

∂τ
+aφ

1
2

∂φ

∂ξ
+b

∂ 3φ

∂ξ 3 + c
∂ 2φ

∂ξ 2 +dφ = 0 (22)

with a =
(1−β )√

π
, b =

1
2

, c =−ζ0

2
,d =

µ

2τ
.

The extra term µ/2τ (Eq. (22)), defined as geometrical term in the Eq. (22), arises
due to the non-planar geometry and the value of µ can be 0 (planar), 1/2 (cylindrical),
and 1 (spherical waves). When |τ| → 0, it is studied that the effect of nonplanar
geometry is significant and for higher values of |τ|, it becomes an weak formation.

3. Analytical approximate solution for nonplanar
Schamel-Burgers equation

Generally, one cannot solve the Eq. (22) for an exact analytical solution and one
has to attempt to get its analytical approximate solution. For sufficiently large values
of τ and ζ0 = 0, the nonplanar Schamel-Burger Eq. (22) may be rewritten as
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∂φ

∂τ
+a
√

φ
∂φ

∂ξ
+b

∂ 3φ

∂ξ 3 = 0 (23)

we assume the solitary wave solution of the Eq. (23) as

φ = λ0sech4
η0, η0 = w(ξ −V0τ) (24)

with

w2 =
aλ

1/2
0

30b
, V0 =

8aλ
1/2
0

15
(25)

where λ0 is the constant amplitude. The form of the solution given by Eq. (24) moti-
vated us to propose a progressive wave solution for the evolution Eq. (22) as

φ = λ (τ)sech4
η , η = w(τ)(ξ −V (τ)) (26)

with

w2(τ) =
aλ (τ)1/2

30b
, V ′(τ) =

8aλ (τ)1/2

15
(27)

where V ′(τ) denotes differentiation of the function V (τ) w.r.t τ . As a matter of fact,
the solutions given in Eq. (26) and Eq. (27) are formally the same with those given
in Eq. (24) and Eq. (25) except that in Eq. (27), λ (τ) is to be determined. Using the
results Eq. (26), Eq. (27) in the Eq. (22), we note that the equation is not satisfied
identically; there will be rather a residue term R(η ,τ) given by

R(η ,τ) =

[
λ
′+16cλw2 +dλ − 4λw′η

w
tanhη

]
sech4

η−20cw2
λ sech6

η (28)

The above expression cannot be made zero point by point. Here, we note that the
residue term R(η ,τ) is an even function of the variable η . Using WRM [17, 18], we
obtain a differential equation for λ (τ). To get a strong restrictions on the coefficient
λ (τ), we choose sech4

η as a weighting function. Multiplying the result of Eq. (28)
by the weighting function and integrating with limit −∞ to ∞ for η and setting
the result equal to zero, we get

λ
′+16cλw2 +dλ − λw′

2w
− 160cw2λ

9
= 0 (29)

removing w from Eq. (29) with the aid of Eq. (27) one gets

λ
′+

4µ

7τ
λ =

64ac
945b

λ
3
2 (30)
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From this, one can easily obtain

λ (τ) =

(
Pτ

2µ

7 +
32acτ

(2µ

7 −1)945b

)−2

(31)

where P is the constant of integration. Using limτ→τ0λ (τ) = λ0, the wave amplitude
defined earlier, we see that the result (Eq. (29)) becomes

λ (τ) = λ0

(
τ0

τ

) 4µ

7

1+
32acλ

1
2

0 τ0

(2µ

7 −1)945b

[(
τ0

τ

) 2µ

7 −1
−1

]−2

(32)

Using Eq. (32) in the expression of Eq. (27) and integrating, we get

V (τ) =
8acτ0λ

1
2

0
15

− 63
4c

ln

1+
32acλ

1
2

0 τ0

(2µ

7 −1)945b

[(
τ0

τ

) 2µ

7 −1
−1

] (33)

where we have set V (τ0) =
8acτ0λ

1
2

0
15

. Equation (27) gives

w(τ) =

√√√√√√aλ
1
2

0

(
τ0
τ

) 2µ

7

(
1+ 32acλ

1
2

0 τ0

( 2µ

7 −1)945b

[(
τ0
τ

) 2µ

7 −1−1
])−1

30b
(34)

Thus, the final solution may be expressed by

φ(ξ ,τ) = λ (τ)sech4[w(τ)(ξ −V (τ))] (35)

where τ >> τ0 and λ0 is the initial amplitude and λ (τ), V (τ), and w(τ) are given by
Equations (32)-(34).

4. Results and discussions

The analytical solution given by Eq. (35) of the modified cylindrical (spherical)
KdV equation in the presence of the kinematic viscosity coefficient has been used
to study the physical behavior of model parameters and three different observations
have been depicted in Figures 1-4: In this section the propagating behaviors of cylin-
drical and spherical IAW for the variations in different parameters, viz., τ , β , ζ0, and
µ are analyzed from a numerical stand point in Figures 1-4. In Figure 1a and 1b, the
analytical solutions given by Eq. (35) of Eq. (22) have been presented in cylindri-
cal and spherical geometry respectively. In both cases, the amplitude of the solitons
decrease with the increase in time. In Figure 1, the evolution of a solitary structure
is shown in planer (µ = 0) and nonplaner (µ = 1 and µ = 2) geometry for β =−1,

λ0 = 0.8, τ = 10, ζ0 = 0.2, τ0 = 4. It is found that a nonplaner soliton moves with
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Fig. 1. Profiles of φ(ξ ,τ) given by Eq. (35): a) when β =−1, µ = 1, λ0 = 0.8, ζ0 = 0.2, τ0 = 4,
b) when β =−1, µ = 2, λ0 = 0.8, ζ0 = 0.2, τ0 = 4, c) when β =−1, λ0 = 0.8,

τ = 10, ζ0 = 0.2, τ0 = 4
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Fig. 2. Profiles of φ(ξ ) given by Eq. (35): a) when β =−1, ζ0 = 0.2, µ = 1, τ0 = 4, τ = 10,
b) when β =−1, ζ0 = 0.2, µ = 2, τ0 = 4, τ = 10, c) when µ = 1, λ0 = 0.5, τ = 10,
ζ0 = 0.2, τ0 = 4, d) µ = 2, τ0 = 4, τ = 10, e) when β =−1, µ = 1, τ0 = 4, β =−1,

τ = 10, f) when β =−1, µ = 2, τ0 = 4, β =−1, τ = 10

higher amplitude compared to the planer one. During the evolution, it is also observed
from Figure 1c that the amplitude of the cylindrical soliton is higher than that of the
planer one however, it is always less than that of the spherical soliton like solution.
Figure 2a and 2b are drawn to present the variation of the amplitude of the soliton in
cylindrical and spherical geometry respectively due to the change in the parameter λ0
of the soliton. It is noticed that higher λ0 leads to form the soliton with higher ampli-
tude however, an increase in λ0 makes the soliton narrower. Figure 2c and 2d present
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Fig. 3. Variation of Amplitude λ given by Eq. (32): a) for β =−1, λ0 = 0.8, τ0 = 4, τ = 10,
b) when λ0 = 0.8, ζ0 = 0.2, τ = 10, τ0 = 4, c) when β =−1, ζ0 = 0.2, τ0 = 4,

τ = 10. Variation of Amplitude Eq. (32) in 3d view, d) for λ0 = 0.8, τ0 = 4,
τ = 10, e) for β =−1, τ0 = 4, τ = 10, f) for ζ0 = 0.2, τ0 = 4, τ = 10

the variations in wave propagation with the variations in β for cylindrical and spher-
ical geometrical space respectively. As β decreases, a larger portion of the electron
becomes free from trapping and naturally magnitude of the electric field diminishes
which causes loss in potential energy of the system. Thus in both the cases (cylin-
drical and spherical), we observed that the soliton becomes small in size (that is, the
soliton with lower amplitude as well as lower width). The most remarkable result in
this investigation follows from the Figure 2e and 2f. The impact of the Burgers term
in wave propagation in cylindrical and spherical geometry is shown in Figure 2e and
2f where an enhancement in the Burger term causes the soliton to go dipper. This
type of nonlinear characteristic in solitary structure is expected as enhancement in
Burgers effect leads to increase dissipation in the system. Some 2D and 3D figures
are drawn in Figures 3a-f for a clear presentation of the variation in amplitude due to
the variation in different physical parameters. In Figure 3a, we see the reduction of
the affects in the amplitude for choosing nonplanar geometrical space as a field me-
dia. Moreover slow diminishing trend in the amplitude of the solitons appear due to
the increase in ζ0. Figure 3b shows that no significant change in amplitude is found
due to an increase in the distribution parameter β . It is confirmed from Figure 3c that
the amplitude of the soliton substantially increases with the increase in λ0. Figures
3d-f exhibit the variation in amplitude in different parametric plane. Nonlinear evolu-
tion of the soliton like the solution in cylindrical and spherical geometrical space are
presented in Figures 4a-b, in which singularity of the solution is confirmed at τ = 0.
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(a) (b) (c)

(d) (e)

Fig. 4. 3d Profiles of for Solution Eq. (35): a) for µ = 1, λ0 = 0.8, τ0 = 4, ζ0 = 0.2, β =−1,
b) for µ = 2, λ0 = 0.8, τ0 = 4, β =−1. c) when µ = 1, λ0 = 0.8, τ0 = 4, ζ0 = 0.2, τ = 10,
d) when µ = 1, λ0 = 0.8, τ0 = 4, β =−1, τ = 10, e) when τ0 = 4, µ = 1, β =−1, τ = 10

Figure 4c shows how the change in the parameter β affect the width of the soliton.
A strong enhancing trend in width is found in Figure 4c due to the decrease in the
parameter β . Figure 4d and 4e show that the significant effect of the parameters ζ0
and λ0 on amplitude of the soliton.

5. Conclusion

In this literature, the propagating behaviors of the EA wave in cylindrically and
spherically symmetric plasmas comprising hot electrons with vortex-like distribu-
tion have been studied in the framework of the nonplanar Schamel-Burgers model.
To our best knowledge, for the first time, the dissipation effect is considered in the
nonplanar Schamel model, and their significant effects have been noticed in wave
propagation. The entire investigation has been carried out to find the effect of other
physical parameters in the Schamel Burgers medium, and the major observations can
be summarized as follows:

During the investigation, it has been observed from the figures illustrated with the
variations in parameters that the spherical soliton is always somewhat bigger than
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the cylindrical one due to the presence of the modification term (µ/2τ) in the NSB
equation.

The values of wave velocity and wave amplitude increase with the increase in
the value of positive ion constant λ0. It is also found that the width of the wave de-
creases as the value of λ0 increases. Moreover, the component value of the expression
(
τ0

τ
)

2µ

7 −1 decreases with the increase in the value of τ and as a result, the value of the

wave velocity and the value of the expression, (
τ0

τ
)

2µ

7 −1 also decrease.
A significant effect in wave propagation has been observed due to the variation

in β . The decrease in β releases the free electron from trapping and thus the totality
of magnitude of the electric field is lost. As a result, the soliton becomes small in
size and a left-hand shifting in solitary motion is also found. As expected, a dimin-
ishing trend in the amplitude of the soliton appears for enhancing ζ0 which causes
an increase in the dissipation effect in the system.
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