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Abstract. The purpose of this paper is to present a new conjugate gradient method for solv-
ing unconstrained nonlinear optimization problems, based on Perry’s idea. An accelerated
adaptive algorithm is proposed, where our search direction satisfies the sufficient descent
condition. The global convergence is analyzed using the spectral analysis. The numerical
results are described for a set of standard test problems, and it is shown that the performance
of the proposed method is better than that of the CG-DESCENT, the mBFGS and the SPDOC.
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1. Introduction

It is well known that the nonlinear conjugate gradient method is characterized by
low memory requirements and strong local and global convergence properties and is
more practical than other methods because it minimizes the large-scale unconstrained
optimization problem [1–6]

min
x∈Rn

f (x), (1)

where f is a sufficiently smooth function. This method generates a sequence {xk}k∈N,
where the starting is some x0 ∈ Rn, using the following recurrence relation

xk+1 = xk +αkdk, (2)
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where, αk is the step length of the line search, and the directions dk are given by{
d1 =−g1
dk+1 =−gk+1 +βkdk, ∀k ≥ 1,

(3)

where, gk = g(xk) = ∇ f (xk), and βk is a conjugate gradient parameter. Well known
formulas for βk include the Hestenes-Stiefel (HS) [7], the Fletcher-Reeves (FR) [8],
the Polak-Ribiére-Polyak (PRP) [9], the Liu-Storey (LS) [10] and the Hager-Zhang
(HZ) [11].

We know that to obtain the global convergence results of the said conjugate gra-
dient methods, it is usually required that the step size αk should satisfy some line
search conditions, such as the strong Wolfe line search

f (xk +αkdk)− f (xk)≤ δαkg>k dk, (4)

σg>k dk ≤ g(xk +αkdk)
>dk ≤−σg>k dk, (5)

with, 0 < δ <
1
2

and δ < σ < 1. The search direction dk+1 is required to satisfy the
sufficient descent condition

d>k+1gk+1 ≤−c‖gk+1‖2, c > 0. (6)

In addition to what we mentioned, quasi-Newton methods [12,13] are shown to be
sometimes effective methods for solving (1). The search direction of Quasi-Newton
methods is given by

dk+1 =−Hk+1gk+1,

where Hk+1 is an approximation to the inverse of the Hessian matrix 52 f (xk)
−1.

Some authors use this technique in the conjugate gradient method. By using it, Perry
[14] has proposed the following formula in order to compute the parameter βk

β
p
k =

y>k gk+1− s>k gk+1

d>k yk
, (7)

where, sk = xk+1−xk and yk = gk+1−gk. By substituting (7) in (3) and applying some
simple algebraic manipulations, we obtain the corresponding Perry’s search direction
as follows:

dp
k+1 =−

(
I−

sky>k
y>k sk

+
sks>k
y>k sk

)
gk+1 =−Pk+1gk+1. (8)

In Perry’s method, the matrix Pk+1 is used to estimate the approximation of the
inverse of the Hessian matrix. If the line search is exact, (d>k gk+1 = 0), then (7)
is identical to the Hestenes and Stiefel [7] conjugate gradient algorithm. Observing
that Pk+1 is not symmetric, then some authors have modified this matrix to meet
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the previous requirements using different techniques (see for example [15–17]), as
Andrei [18] who presented a symmetric matrix to estimate the inverse of the Hessian
matrix approximation as follows

PN
k+1 = I−

sky>k + yks>k
y>k sk

+ηk
sks>k
y>k sk

, (9)

by computing the parameter ηk in some different manner [19].
In this paper, we focus our attention on Perry’s [14] observation using the (HS)

choice, in which the direction dk+1 in (3) can be rewritten as

dk+1 =−Dk+1gk+1 =−
(

I−
sky>k
s>k yk

)
gk+1. (10)

The matrix Dk+1 is a conjugate gradient iteration matrix and represents an in-
verse of a Hessian matrix approximation but is not symmetric. In literature, there
have several symmetry procedures have been proposed like the Powell symmetrical
technique [20]. Thus, based on the HS method, many variants have been developed
because it has better computing performance, some of these variants are widely used
in practice.

Moreover, it is very important to choose a good iteration matrix for a general non-
linear conjugate gradient method. Starting from Dk+1, we propose a new symmetric
and positive definite matrix which always satisfies the sufficient descent condition for
any line search. We also use a certain technique of an accelerated adaptation on our
conjugate gradient algorithm and show that the proposed method converges globally
using the spectral analysis [Spectral analysis refers to us studying the eigenvalues of
the matrix Mk+1 that comes after (for instance, check Section 2)]. Finally, we describe
the numerical results.

2. The new method

In this section, we present a new algorithm, developed and adapted for solving
large-scale problems, at any iteration.
The matrix Dk+1 in (10) is not symmetric; so, we propose the following symmetric
one instead

Dsym
k+1 =

D>k+1 +Dk+1

2
= I− 1

2
sky>k + yks>k

s>k yk
. (11)

As we can see, our proposed matrix is symmetric, and we move to the next step that
is the study of its spectra (consequently its positive definiteness). Thus, one gains
an always-true sufficient condition of the descent.

Theorem 1 Let Dsym
k+1 be defined by (11). If sk and yk are independent linear vectors

and s>k yk 6= 0. Then, Dsym
k+1 has 1 for an eigenvalue with multiplicity (n−2); and the
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remaining two eigenvalues are the maximum and the minimum ones µ
k+1
max and µ

k+1
min

respectively and are formulated by

µ
k+1
max =

1
2
+

1
2

√
(s>k sk)(y>k yk)

(s>k yk)2
, (12)

µ
k+1
min =

1
2
− 1

2

√
(s>k sk)(y>k yk)

(s>k yk)2
. (13)

2

PROOF Using the following algebraic formula

det(I + xy>+uv>) = (1+ y>x)(1+ v>u)− (x>v)(y>u),

we get

det(Dsym
k+1) = det

(
I− 1

2
sky>k + yks>k

s>k yk

)

=

(
1− 1

2
s>k yk

s>k yk

)(
1− 1

2
y>k sk

s>k yk

)
− 1

4
(s>k sk)(y>k yk)

(s>k yk)2

=
1
4
−

(s>k sk)(y>k yk)

4(s>k yk)2
.

(14)

Therefore, the matrix Dsym
k+1 is nonsingular when

(s>k sk)(y>k yk)

(s>k yk)2
> 1.

The matrix Dsym
k+1 has the eigenvalue 1 (with multiplicity (n−2)).

Since ∀ζ ∈ span{yk,sk}⊥

Dsym
k+1ζ =

(
I− 1

2
sky>k + yks>k

s>k yk

)
ζ = ζ −

y>k ζ

2s>k yk
sk−

s>k ζ

2s>k yk
yk = ζ .

From formula (11), we can get the trace of Dsym
k+1 as follows

tr(Dsym
k+1) = tr

(
I− 1

2
sky>k + yks>k

s>k yk

)
= n− 1

2
y>k sk + s>k yk

s>k yk
= n−1
= 1+ ...+1︸ ︷︷ ︸

(n−2)times

+µ
k+1
max +µ

k+1
min .

(15)

Therefore, we obtain that

µ
k+1
max +µ

k+1
min = 1. (16)

Also, for the determinant relations

det(Dsym
k+1) = µ

k+1
max µ

k+1
min ,
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and thus

µ
k+1
max µ

k+1
min =

1
4
−

(s>k sk)(y>k yk)

4(s>k yk)2
. (17)

From (16) and (17), we construct the following quadratic equation

µ
2−µ +

1
4
−

(s>k sk)(y>k yk)

4(s>k yk)2
= 0.

Thus, the other two eigenvalues are determined by (12) and (13), respectively. �

From the previous theorem and
(s>k sk)(y>k yk)

(s>k yk)2
> 1, we get µ

k+1
min ≤ 0. So, in conclu-

sion, the matrix Dsym
k+1 is not positive definite.

To render the matrix Dsym
k+1 positive definite, we need to raise its power to 2p,

p ∈ N?. To this end, let the formula be

Mk+1 = (Dsym
k+1)

2p =

(
I− 1

2
sky>k + yks>k

s>k yk

)2p

. (18)

Then, applying the previous theorem, the eigenvalues of Mk+1 are similar to those
of Dsym

k+1 only that its maximum and minimum ones (λ+
k+1 and λ

−
k+1, respectively)

are given by λ
+
k+1 =

(
µ

k+1
max

)2p
, λ

−
k+1 =

(
µ

k+1
min

)2p
.

However, if sk and yk were linearly dependent vectors, i.e sk = σyk, then Mk+1
would be reformulated as

Mk+1 =
(

Dsym
k+1 +

(
1−µ

k+1
min

)
I
)2p

,

that yields

Mk+1 =

(
2I−

yky>k
y>k yk

)2p

. (19)

Then, the eigenvalues of the matrix Mk+1 consist of 22p with (n− 1 multiplicity),
and λ

−
k+1 = 1, because Dsym

k+1 is diagonalizable for any function H defined on
Sp(Dsym

k+1)⊂D(H), then sp(H(Dsym
k+1)) = H(Sp(Dsym

k+1)). In the previous case, we took
H(a) = (a+(1−µ

k+1
min ))

2p, to obtain the above eigenvalues.
From the simple adaptive strategy applied to the matrix Dk+1, we have the follow-

ing search direction

dk+1 =−Mk+1gk+1, (20)

where

Mk+1 =

{
(19) if sk = σyk
(18) otherwise.

(21)
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The next theorem implies that our method satisfies the sufficient descent condi-
tion.

Theorem 2 Let the sequence {dk+1}k∈N be generated by (20). Then the search di-
rection satisfies the sufficient descent condition

d>k+1gk+1 ≤−c‖gk+1‖2, c > 0.

PROOF For all k ≥ 1, we have from (20) and the fact that Mk+1 is a symmetric,
positive definite matrix,

d>k+1gk+1 =−g>k+1Mk+1gk+1 ≤−λ
−
k+1‖gk+1‖2. (22)

This shows that the descent condition is satisfied. �

3. The acceleration of the new conjugate gradient algorithm

We know that the best features of the conjugate gradient methods are their simple
iterations and low memory requirements. However, the proposed matrix in the previ-
ous section requires a large storage space which is not easy to apply in this form to
a large scale unconstrained optimization problem. In order to overcome this difficulty,
we propose an accelerated formula to calculate Mk+1 more efficiently.

The next theorem shows this new reformulation of Mk+1.

Theorem 3 Let Mk+1 be defined by (18). Then,(
I− 1

2
sky>k + yks>k

s>k yk

)2p

= I +η2p

(
sky>k + yks>k

)
+δ2psks>k + γ2pyky>k , (23)

where

η2p =
1
2

((
1
2
−
√

akbk

)2p−1

+

(
1
2
+
√

akbk

)2p−1
)(

−1
2(s>k yk)

− 1
(4akbk−1)(s>k yk)

)

− 2bk

(4akbk−1)(s>k yk)

(
−ak

2
√

akbk

(
1
2
−
√

akbk

)2p−1

+
ak

2
√

akbk

(
1
2
+
√

akbk

)2p−1
)

+
1

(4akbk−1)(s>k yk)
,

δ2p =
−
√

akbk

2ak

((
1
2
−
√

akbk

)2p−1

−
(

1
2
+
√

akbk

)2p−1
)(

−4akbk−1
2(4akbk−1)(s>k yk)

)

− 2bk

(4akbk−1)(s>k yk)

(
1
2

(
1
2
−
√

akbk

)2p−1

+
1
2

(
1
2
+
√

akbk

)2p−1

−1

)
,
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γ2p =
−
√

akbk

2bk

((
1
2
−
√

akbk

)2p−1

−
(

1
2
+
√

akbk

)2p−1
)(

−4akbk−1
2(4akbk−1)(s>k yk)

)

− 2ak

(4akbk−1)(s>k yk)

(
1
2

(
1
2
−
√

akbk

)2p−1

+
1
2

(
1
2
+
√

akbk

)2p−1

−1

)
,

with ak =−
s>k sk

2(s>k yk)
and bk =−

y>k yk

2(s>k yk)
.

2

PROOF We give a proof by induction. For p = 1,(
I− 1

2
sky>k + yks>k

s>k yk

)2

= I− 3
4(s>k yk)

sky>k −
3

4(s>k yk)
yks>k +

y>k yk

4(s>k yk)2
sks>k +

s>k sk

4(s>k yk)2 yky>k .

We, then assume that for any p > 1,
(

I− 1
2

sky>k + yks>k
s>k yk

)2p

verifies (23), and we

show that
(

I− 1
2

sky>k + yks>k
s>k yk

)2p+1

also holds.(
I− 1

2
sky>k + yks>k

s>k yk

)2p+1

=

=
(

I +η2psky>k +η2pyks>k +δ2psks>k + γ2pyky>k
)(

I−
sky>k + yks>k

2(s>k yk)

)
=

= I +

(
−1

(s>k yk)
+

η2p

2
−

δ2ps>k sk

2(s>k yk)

)
sky>k +

(
−1

(s>k yk)
+

η2p

2
−

γ2py>k yk

2(s>k yk)

)
yks>k

+

(
δ2p

2
−

η2py>k yk

2(s>k yk)

)
sks>k +

(
γ2p

2
−

η2ps>k sk

2(s>k yk)

)
yky>k ,

where, similarly, we get

η2p+1 =

(
−1

(s>k yk)
+

η2p

2
−

δ2ps>k sk

2(s>k yk)

)
=

(
−1

(s>k yk)
+

η2p

2
−

γ2py>k yk

2(s>k yk)

)

=
1
2

((
1
2
−
√

akbk

)2p

+

(
1
2
+
√

akbk

)2p
)(

−1
2(s>k yk)

− 1
(4akbk−1)(s>k yk)

)

− 2bk

(4akbk−1)(s>k yk)

(
−ak

2
√

akbk

(
1
2
−
√

akbk

)2p

+
ak

2
√

akbk

(
1
2
+
√

akbk

)2p
)

+
1

(4akbk−1)(s>k yk)
,
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δ2p+1 =

(
δ2p

2
−

η2py>k yk

2(s>k yk)

)

=
−
√

akbk

2ak

((
1
2
−
√

akbk

)2p

−
(

1
2
+
√

akbk

)2P
)(

−4akbk−1
2(4akbk−1)(s>k yk)

)

− 2bk

(4akbk−1)(s>k yk)

(
1
2

(
1
2
−
√

akbk

)2p

+
1
2

(
1
2
+
√

akbk

)2p

−1

)
,

γ2p+1 =

(
γ2p

2
−

η2ps>k sk

2(s>k yk)

)

=
−
√

akbk

2bk

((
1
2
−
√

akbk

)2p

−
(

1
2
+
√

akbk

)2p
)(

−4akbk−1
2(4akbk−1)(s>k yk)

)

− 2ak

(4akbk−1)(s>k yk)

(
1
2

(
1
2
−
√

akbk

)2p

+
1
2

(
1
2
+
√

akbk

)2p

−1

)
,

which completes the proof. �

The previous theorem allows us to rewrite Mk+1 as

Mk+1 = I +η2p

(
sky>k + yks>k

)
+δ2psks>k + γ2pyky>k , (24)

which makes it more suitable for numerical programming. According to Theorem 3,
Mk+1 can be modified as

Mk+1 =

{
(19) if sk = σyk
(24) otherwise.

(25)

Additionally, we obtain the descent conjugate gradient algorithm as

Algorithm 1 Generalization of Perry’s Powers (GPP)

Step 1. Give an initial point x0 and ε ≥ 0. Set k = 0.
Step 2. Calculate g0 = g(x0). If ‖gk‖ ≤ ε , then stop, otherwise let d0 = −g0 and
continue with Step 3.
Step 3. Calculate the step length αk with strong Wolfe line search conditions (4)
and (5).
Step 4. Set xk+1 = xk +αkdk.
Step 5. Calculate gk+1 = g(xk+1).
Step 6. If ‖gk+1‖ ≤ ε , then stop.
Step 7. Calculate the direction dk+1 via (20) where Mk+1 is computed by (25). Set
k = k+1, then go to Step 3.
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4. Global convergence result

In this section, we analyze the our algorithm’s global convergence of our algo-
rithm using spectral theory tools. Earlier, we introduced the following hypotheses
about the objective function f (x).
H1 f is bounded below in Rn and is continuously differentiable in a neighborhood
N of the level set S = {x ∈ Rn f (x) ≤ f (x0)}, where x0 is the starting point of the
iteration.
H2 The gradient of f is Lipschitz continuous over N, i.e. there is a constant L > 0
such that

‖∇ f (x̃)−∇ f (x)‖ ≤ L‖x̃− x‖.

Lemma 1 Supposing that the hypotheses H1 and H2 are satisfied and the sequence
{xk}k is generated by (2) and αk are determined such that the Wolfe conditions hold,
the Zoutendijk condition is

∞

∑
k=0

(g>k dk)
2

‖dk‖2 <+∞.

PROOF See [21]. �

Next, for an objective function satisfying H1 and H2, the spectral condition theorem
of the global convergence in [20] is introduced as:

Theorem 4 Let the objective function f (x) satisfy H1 and H2. For the nonlinear
conjugate gradient method, its iterative sequence is generated by (2) and its line
search directions are calculated by{

d1 =−g1
dk+1 =−Mk+1gk+1, ∀k ≥ 1,

(26)

such that the sufficient descent condition (6) holds, and that αk are determined in
a way such that the Wolfe conditions hold and

∞

∑
k=1

(λ+
k+1)

−2 =+∞, (27)

where, λ
+
k+1 is the maximum eigenvalue of Mk+1. Then

liminf
k→∞

‖gk‖= 0. (28)

Moreover, if λ
+
k+1 ≤ Λ, where Λ is a positive constant, then

lim
k→∞

‖gk‖= 0. (29)
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Remark 1 If Mk+1 is an symmetric positive definite matrix, then the spectral condi-
tion (27) can be rewritten as

∞

∑
k=1

(κ2(Mk+1))
−2 =+∞, (30)

where κ2 is the spectral condition number of Mk+1. 2

PROOF Supposing that, by contradiction, there exists γ > 0 such that ‖gk‖ ≥ γ for
all k ≥ 1. Then, from (26) and the fact that Mk+1 is an symmetric positive definite
matrix, it follows that

‖dk+1‖2 = g>k+1M>k+1Mk+1gk+1 ≤
(
λ
+
k+1

)2 ‖gk‖2, (31)

and that,

cos2
θk =

(g>k+1dk+1)
2

‖dk+1‖2‖gk+1‖2 ≥
(
λ
−
k+1

)2 ‖gk+1‖4(
λ
+
k+1

)2 ‖gk+1‖4
= (κ2(Mk+1))

−2,

where, θk is the angle between dk+1 and (−gk+1). Thus,

∑
k≥0
‖gk+1‖2cos2

θk ≥ γ
2

∞

∑
k=0

(κ2(Mk+1)
−2 =+∞, (32)

which contradicts the Zoutendijk’s condition

∑
k≥0
‖gk+1‖2cos2

θk ≤
∞

∑
k=0

(g>k+1dk+1)
2

‖dk+1‖2 <+∞ (33)

This latter contradiction implies that the results of Lemma 1 are true.
Hence, liminf

k→∞

‖gk‖= 0. �

5. Numerical results

In this section, we discuss the efficiency of our new version of GPP algorithm
by comparing it with the CG-DESCENT algorithm of Hager and Zhang [22], the
mBFGS algorithm [23] and the SPDOC algorithm [24]. To determine the perfor-
mance of all algorithms on a set of unconstrained optimization test problems [25],
each problem is tested for a number of variables: 2, 10, 50, 100, 1000, 1500, 2000,
5000, and 10000 so that the total number of test problems is the 80 unconstrained
problems. We run them on a PC with the next specifications Intel(R) core (TM)i5
CPU 650 @ 3.20 GHz, 3.00 Go RAM. Using the strong Wolfe line search condi-
tions with δ = 0.0001, σ = 0.1 and the termination criterion for all the algorithms
‖gk‖2 ≤ 10−6, we adopt the performance profiles given by Dolan and Moré [26] to
compare the performance.
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Before doing so, we choose the best value of p. As it is shown in Figure 1a,
the new method with p = 3 performs better than p = 1, p = 4. Figures 1b and 2a,b
represent the performance profile measured by CPU time, the number of iterations
and the number of functions and gradient evaluations, respectively. All figures show
that the proposed algorithm in this paper performs substantially better than that of the
CG-DESCENT, the mBFGS and SPDOC.

(a) (b)

Fig. 1. Performance profile for CPU time

(a) (b)

Fig. 2. Performance profile for the number of iterations (a), functions and gradient evaluations (b)

6. Conclusion

In this paper, we have proposed a conjugate gradient method based on Perry’s
idea with modification. An important property of our proposed method is to ensure
the sufficient descent using any line search, and we showed that it is globally con-
vergent for general functions. We confirmed the effectiveness of our method using
the performance profile. By varying the exponent p ∈ N∗, we had found that p = 3
was seemingly the optimal one for bettering the performance on, virtually, all the
scales (CPU time, the number of iterations and the number of functions and gradient
evaluations).
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In our future works, we will consider more thoroughly exploring and investigating
the possible reasons why p = 3 is (seemingly) the one exponent choice that renders
our method’s performance as well as possible.
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Université 8 Mai 1945 Guelma. B.P. 401 Guelma 24000 Algérie.

References

[1] Baluch, B., Salleh, Z., & Alhawarat, A. (2018). A new modified three-term Hestenes-Stiefel
conjugate gradient method with sufficient descent property and its global convergence. Journal
of Optimization, 6, 1-13.

[2] Sabi’u, J., Muangchoo, K., Shah, A., Abubakar, A.B., & Aremu, K.O. (2021). An inexact
optimal hybrid conjugate gradient method for solving symmetric nonlinear equations. Symmetry,
13(10), 1829.

[3] Salleh, Z., Alhamzi, G., Masmali, I., & Alhawarat, A. (2021). A modified Liu and Storey
conjugate gradient method for large scale unconstrained optimization problems. Algorithms,
14(8), 227.

[4] Sabi’u, J., Shah, A., & Waziri, M.Y. (2020). Two optimal Hager-Zhang conjugate gradient
methods for solving monotone nonlinear equations. Applied Numerical Mathematics, 153,
217-233.

[5] Waziri, M.Y., Ahmed, K., & Sabi’u, J. (2019). A family of Hager-Zhang conjugate gradient
methods for system of monotone nonlinear equations. Applied Mathematics and Computation,
361, 645-660.

[6] Sabi’u, J., Shah, A., & Waziri, M.Y. (2021). A modified Hager-Zhang conjugate gradient
method with optimal choices for solving monotone nonlinear equations. International Journal of
Computer Mathematics, 1-23.

[7] Hestenes, M.R., & Stiefel, E. (1952). Methods of Conjugate Gradients for Solving Linear
Systems. (Vol. 49, No. 1), Washington, DC: NBS.

[8] Fletcher, R., & Powell, M.J. (1963). A rapidly convergent descent method for minimization.
The Computer Journal, 6(2), 163-168.

[9] Polak, E., & Ribiere, G. (1969). Note sur la convergence de méthodes de directions con-
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