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Abstract. We investigate the locally defined operators, sometimes called operators with
memory, that map the space C∞(A) of continuously differentiable functions in the sense of
Whitney defined on a compact subset A ⊂ Rn into the space of continuous functions defined
on the same set A. Using the Whitney Extension Theorem, we give a representation formula
for such operators stating that every local operator K : C∞(A) → C0(A) is a generalized
Nemytskii operator generated by some function h : A×RN → R.
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1. Introduction

Let X be a topological space, Y , Z be arbitrary nonempty sets and let G =G (X ,Y )
and H = H (X ,Z) stand for two classes of functions ϕ : X → Y and φ : X → Z,
respectively. An operator K : G →H is said to be locally defined (or with memory),
if two functions from the class G coincide on an open subset then the images of the
functions through the operator K are equal on the same open set. A typical example
is the Nemytskii composition operator

H(ϕ)(x) = h(x,ϕ(x)), ϕ ∈ G (x ∈ X),

generated by some function h of two variables. It turns out that in some classes
of functions it is the only operator that has this memory property (see for instance
[1, 2]).

However, in the case where the topological space X , the sets Y , Z, and the classes
of functions G and H are more significant ones, this definition of Nemytskii oper-
ator is not sufficient to describe the possible forms of the locally defined operators
K : G → H . It was shown by Lichawski et al. [3] that if X is a real compact interval,
Y = Z = R, G is the class Cm (X) of m-times continuously differentiable functions
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and H =C0 (X) , then there exists a function h : X ×Rm+1 → R such that

K (ϕ)(x) = h
(

x,ϕ (x) ,ϕ ′ (x) , ...,ϕ(m) (x)
)
, ϕ ∈Cm (X) , x ∈ X .

An analogous result was proved by Matkowski and Wróbel for Whitney differentiable
functions [4].

The main result of this paper gives a representation formula for operators with
memory of the type K :

⋂
m∈N

Cm(A) → C0(A). Here Cm(A) denotes the class of

m-times continuously differentiable functions in the Whitney sense. In particular,
taking n = 1, and A ⊂R as an interval, we obtain one of the results of [3] stating that
the operator K must be of the form

K(ϕ)(x) = h(x,ϕ(x),ϕ ′(x), . . .), (x ∈ A), ϕ ∈C∞(A),

where the function h : A×RN → R is uniquely determined.
Closely related to the theory of operators with memory is the study of solutions of

nonlinear integral equations of the Hammerstein type and the Volterra-Hammerstein
type having application in many fields of science such as economics or physics where
the memory effects are very important. More details can be found, for example, in the
monographs [5, 6]. It is worth mentioning that the Whitney-differentiable functions
are useful in the issues related to optimization problems [7].

2. Preliminaries

In this paper, the symbols N0, R denote, respectively, the set of nonnegative inte-

gers and the set of real numbers. Let Nn
0 :=

n

∏
i=1

N0 for n ∈ N and RN :=
n

∏
i=1

R.

For n ∈ N, j ∈ Nn
0, j = ( j1, . . . , jn), and x = (x1, . . . ,xn) ∈ Rn we put

| j| := j1 + . . .+ jn, j! := j1! · . . . · jn!, x j := x j1
1 · . . . · x jn

n ,

and

∥x∥ :=

√
n

∑
i=1

x2
i .

We start with the following

Definition 1 ([18], cf. also [9]). Let A ⊂ Rn be a nonempty set and let m ∈ N0.
A family f of functions f j : A → R for j ∈ Nn

0, | j| ≤ m, i.e.,

f = { f j ∈ RA : j ∈ Nn
0, | j| ≤ m}

is said to be a Whitney jet (or a Whitney m-jet) on A, briefly f ∈ Cm(A), if for all
j ∈ Nn

0, | j| ≤ m, x0 ∈ A, and ε > 0 there exists a δ > 0 such that for all x,y ∈ A
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the inequalities ∥x− x0∥< δ and ∥y− x0∥< δ imply that∣∣∣∣∣ f j(x)− ∑
|i|≤m−| j|

f j+i(y)
i!

(x− y)i

∣∣∣∣∣≤ ε ∥x− y∥ m−| j|.

(Here RA stands for the set of all real functions defined on A.)

Definition 2 ([8, p. 65]). Let n ∈N and let A ⊂Rn be a nonempty set. A family of
functions f j : A → R for j ∈ Nn

0, i.e.,

f = { f j ∈ RA : j ∈ Nn
0}

is said to be a Whitney ∞-jet on A, briefly f ∈ C∞(A), if for all m ∈ N0 a family
f = { f j ∈ RA : j ∈ Nn

0, | j| ≤ m} is a Whitney m-jet on A.

Thus f ,g ∈C∞(A) and f = g imply that

f = { f j ∈ RA : j ∈ Nn
0}, g = {g j ∈ RA : j ∈ Nn

0},

and

f j = g j for all j ∈ Nn
0.

Remark 1. Assume that A ⊂ Rn is an open set and let f = { f j ∈ RA : j ∈ Nn
0}.

Then f ∈ C∞(A) if and only if the function f (0,...,0) is of the class C∞ on A in the
classical sense and

f j =
∂ | j| f (0,...,0)

∂x j1
1 . . .∂x jn

n
, j ∈ Nn

0.

Moreover, if a function f (0,...,0) is of the class C∞ on A and the limits of all par-
tial derivatives of f at the boundary points of an open set A exist, then the unique
extension of f (0,...,0) to the closure of A is considered as a function of class C∞ in this
closure.

In the above cases, one can identify the function f (0,...,0) with the whole class f .

Remark 2. Let n ∈ N and let A ⊂ Rn be a nonempty and compact set. Then
f ∈C∞(A) if and only if for every m ∈N0 the family f = { f j ∈ RA : j ∈Nn

0, | j| ≤ m}
fulfils the following condition

f j(x)− ∑
|i|≤m−| j|

f j+i(y)
i!

(x− y)i = o
(
∥x− y∥m−| j|

)
as ∥x− y∥→ 0,

where x,y ∈ A, | j| ≤ m.
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Let us recall the following Whitney Extension Theorem which plays a crucial role
in our paper.

Theorem 1 ([8, p. 65]). Let n ∈ N and a closed set A ⊂ Rn be fixed. If f = { f j ∈
RA : j ∈ Nn

0} is a Whitney ∞–jet on A, then there exists a function g : Rn → R of the
class C∞ on Rn in the classical sense such that

∂ | j|g

∂x j1
1 . . .∂x jn

n
(x) = f j(x), x ∈ A, j ∈ Nn

0.

3. Main result

Let Ji ⊂ R, i = 1, . . . ,n, be open intervals. A set J ⊂ Rn,

J =
n

∏
i=1

Ji,

the Cartesian product of the intervals Ji, will be called an open interval in Rn.

Now we are in a position to introduce the definition of a locally defined operators
of the type K : C∞(A)→C0(A).

Definition 3. Let n ∈ N and a nonempty and closed set A ⊂ Rn be fixed. An
operator K : C∞(A) → C0(A) is said to be locally defined if for every open interval
J ⊂ Rn and for all ϕ,ψ ∈C∞(A),

ϕ|A∩J = ψ|A∩J ⇒ K(ϕ)|A∩J = K(ψ)|A∩J,

where ϕ|A∩J := {ϕ
j|A∩J : j ∈ Nn

0}.

We shall need the following two lemmas.

Lemma 1. Let a nonempty and closed set A ⊂ Rn be fixed and let K : C∞(A)→
C0(A) be a locally defined operator. Then for every x0 ∈ A and for all ϕ,ψ ∈C∞(A),
if

ϕ
j(x0) = ψ

j(x0) for all j ∈ Nn
0,

then

K(ϕ)(x0) = K(ψ)(x0).

By the Whitney Extension Theorem (Theorem 1) and Remark 2, the proof of the
lemma is very similar to the proof of Lemma 1 of [4] and will be omitted .

Lemma 2 ([9, p. 11]). Let n ∈N, δ > 0, and a compact set C ⊂Rn be fixed. Then
there exists a function g ∈ C

∞

(Rn) and nonnegative reals C(k1,...,kn), k1, . . . ,kn ∈ N0,
such that
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1. a function g is nonnegative and

g(x) =
{

0, for (x1, . . . ,xn) ∈C,
1, for (x1, . . . ,xn) such that d((x1, . . . ,xn),C)≥ δ ;

2. for all k1, . . . ,kn ∈ N0 and (x1, . . . ,xn) ∈ Rn∣∣∣∣∣ ∂ |k|g

∂xk1
1 . . .∂xkn

n
(x1, . . . ,xn)

∣∣∣∣∣≤ c(k1,...,kn)

δ k1+...+kn
.

(Here d((x1, . . . ,xn),C) denotes the distance from x = (x1, . . . ,xn) to C, i.e.,

d((x1, . . . ,xn),C) = inf{∥(x1 − c1, . . . ,xn − cn)∥ : (c1, . . . ,cn) ∈C}.)

The main result of the present paper reads as follows:

Theorem 2. Let A ⊂ Rn be a compact set. If an operator K : C∞(A)→C0(A) is
locally defined then there exists a unique function h : A×R N → R such that

K(ϕ)(x) = h
(

x,ϕ(0,...,0)(x),ϕ(1,...,0)(x), . . . ,ϕ(0,...,1)(x), . . .
)

for all ϕ ∈C∞(A) and x = (x1, . . . ,xn) ∈ A.

Proof. To simplify the notations we present the proof in the case n= 2. (In general
case the proof goes along the same lines.)

To construct the function h : A×RN 7→ R put

δ := diam A, C := clB((0,0),1),

where clB((0,0),1) denotes a closed ball centered at (0,0) and with the radius r = 1
in the Euclidean space and diamA denotes the diameter of the set A.

By Lemma 2, there exists a nonnegative function g1 ∈ C∞(R2) and the constants
c(k1,k2) ≥ 0; k1,k2 ∈ N0, such that

g1(x1,x2) =

{
0, for (x1,x2) ∈C,
1, for (x1,x2) such that d((x1,x2),C)≥ δ

(1)

and for all k1,k2 ∈ N0,(x1,x2) ∈ R2,∣∣∣∣∣ ∂ k1+k2g1

∂xk1
1 ∂xk2

2

(x1,x2)

∣∣∣∣∣≤ c(k1,k2)

δ k1+k2
. (2)

Put

g := 1−g1
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and

S(i1,i2) := max
{

c(l1,l2) : l1 = 0, . . . , i1 −1; l2 = 0, . . . , i2 −1
}
, (3)

for i1, i2 ∈N0. Fix arbitrarily (z1,z2) ∈ A, y(i1,i2) ∈R, i1, i2 ∈N0, and choose λ(i1,i2) ∈
(−1,1), i1, i2 ∈N0, such that for all k1 = 0, . . . , i1−1, k2 = 0, . . . , i2−1, the following
inequalities (

1+λ(i1,i2)
)k1+k2 <

(
2i1+i2S(i1,i2)

∣∣y(i1,i2)∣∣δ
i1+i2−k1−k2

)−1
(4)

hold true. Let us define the function g(i1,i2) : R2 7→ R, i1, i2 ∈ N0, by the formula

g(i1,i2)(x1,x2) :=
y(i1,i2)
i1!i2!

(x1 − z1)
i1(x2 − z2)

i2g
(
λ(i1,i2)(x1 − z1,x2 − z2)

)
. (5)

Then for all (x1,x2) ∈ R2, i1, i2 ∈ N0, and k1 = 0, . . . , i1 − 1, k2 = 0, . . . , i2 − 1, we
have∣∣∣∣∣∂ k1+k2g(i1,i2)

∂xk1
1 ∂xk2

2

(x1,x2)

∣∣∣∣∣=
∣∣∣∣∣ k1

∑
l1=0

k2

∑
l2=0

y(i1,i2)

(
k1

l1

)(
k2

l2

)
[(i1 − k1 + l1)!(i2 − k2 + l2)!]−1

·(x1 − z1)
i1−k1+l1(x2 − z2)

i2−k2+l2λ
l1+l2
(i1,i2)

∂ l1+l2g

∂xl1
1 ∂xl2

2

(
λ(i1,i2)(x1 − z1,x2 − z2)

)∣∣∣∣∣
≤

∣∣∣∣∣ k1

∑
l1=0

k2

∑
l2=0

y(i1,i2)

(
k1

l1

)(
k2

l2

)
(x1 − z1)

i1−k1+l1(x2 − z2)
i2−k2+l2λ

l1+l2
(i1,i2)

∂ l1+l2g

∂xl1
1 ∂xl2

2

·
(
λ(i1,i2)(x1 − z1,x2 − z2)

)∣∣∣∣∣.
Hence, by (1), (2) and (3), we get∣∣∣∣∣∂ k1+k2g(i1,i2)

∂xk1
1 ∂xk2

2

(x1,x2)

∣∣∣∣∣≤ ∣∣y(i1,i2)∣∣ k1

∑
l1=0

k2

∑
l2=0

(
k1

l1

)(
k2

l2

)
δ

i1+i2−k1−k2+l1+l2λ
l1+l2
(i1,i2)

c(l1,l2)
δ l1+l2

≤ |y(i1,i2)|S(i1,i2)δ
i1+i2−k1−k2

k1

∑
l1=0

k2

∑
l2=0

(
k1

l1

)(
k2

l2

)
λ

l1+l2
(i1,i2)

= |y(i1,i2)|S(i1,i2)δ
i1+i2−k1−k2

(
1+λ(i1,i2)

)k1+k2
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and finally, by (4),∣∣∣∣∣∂ k1+k2g(i1,i2)
∂xk1

1 ∂xk2
2

(x1,x2)

∣∣∣∣∣< 1
2i1+i2

, k1 = 0, . . . , i1 −1, k2 = 0, . . . , i2 −1.

Thus we have shown that for arbitrary i1, i2 ∈ N0, the function g(i1,i2) defined by (5)
satisfies the inequalities∥∥∥∥∥∂ k1+k2g(i1,i2)

∂xk1
1 ∂xk2

2

∥∥∥∥∥
∞

<
1

2i1+i2
, k1 = 0, . . . , i1 −1, k2 = 0, . . . , i2 −1,

where ∥ · ∥∞ denotes the supremum norm on C0(R2). It follows that the function
Pz1,z2,y(0,0),y(1,0),... : A 7→ R defined by

Pz1,z2,y(0,0),y(1,0),...(x1,x2) :=
∞

∑
i1=0

∞

∑
i2=0

g(i1,i2)(x1,x2), (x1,x2) ∈ A,

is of the class C∞ in the Whitney sense on the set A and (cf. [8, p. 408] and
Remark 1)

∂ i1+i2Pz1,z2,y(0,0),y(1,0),...

∂xi1
1 ∂xi2

2

(z1,z2) = y(i1,i2), i1, i2 ∈ N0.

Taking

h(z1,z2,y(0,0),y(1,0), . . .) := K(Pz1,z2,y(0,0),y(1,0) , . . .)(z1,z2),

and applying Lemma 1, we infer that

K(ϕ)(z1,z2) = K
(

Pz1,z2,ϕ(0,0)(z1,z2),ϕ(1,0)(z1,z2)
, . . .

)
(z1,z2)

= h
(

z1,z2,ϕ
(0,0)(z1,z2),ϕ

(1,0)(z1,z2), . . .
)
, (z1,z2) ∈ A

for an arbitrary function ϕ ∈C∞(A), which proves the desired representation formula.
Since the uniqueness of h is obvious, the proof is completed.

Remark 4. Taking in the above theorem n = 1 and for A ⊂R as a closed interval,
one gets Theorem 2 of [3].

4. Conclusions

Applying the Whitney Extension Theorem, we prove that every operator with
memory which acts the space of functions ϕ = {ϕ

j ∈ RA : j ∈ Nn
0} of the class C∞
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in the Whitney sense defined on a closed set A ⊂ Rn into the space of continuous
functions on A is of the form

K(ϕ)(x) = h
(

x,ϕ(0,...,0)(x),ϕ(1,...,0)(x), . . . ,ϕ(0,...,1)(x), . . .
)
,

generated by some function h : A×RN →R. This generalizes one of the main results
of [3].
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