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Abstract. A waterproof or water-resistant sandwich structure which consists of housing
chassis and a gasket requires that gasket contact pressure, which depends on bolt axial
force, is greater than the design minimum pressure on the entire circumference. However,
it is also necessary that gasket contact pressure is smaller than the maximum permissible
gasket pressure. If the maximum stress in chassis can be calculated from bolt axial force,
gasket specifications and chassis stiffness, it is helpful for a design of such waterproof
structures. In this study, chassis have been regarded as Bernoulli-Euler beams, and two
simple numerical methods have thus been derived. Numerical results using the proposed
method are sufficiently converged even in case that the number of partitions is about 10.
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1. Introduction

In order to achieve the waterproof property of precision equipment products and
so on, sandwich structures which consist of housing chassis and a gasket between
them are frequently applied. For waterproofing sandwich structures as shown in Fig-
ure 1, it is required that the gasket contact pressure is greater than the design mini-
mum pressure (y-value) on the entire circumference. However, when the magnitude
of bolt axial force, which governs gasket contact pressure, is too large, various prob-
lems may occur. Concretely, it is necessary that the bolt axial force is in range such
that plastic deformation of chassis is not caused and that gasket contact pressure is
smaller than the maximum pressure permissible to prevent gasket overdeformation.
Hence, in order to set the bolt axial force to the optimum value, gasket characteris-
tics and chassis strength shall be taken into account. By being able to compute the
maximum stress in chassis from bolt axial force, gasket elastic modulus and chassis
stiffness, we can also determine chassis stiffness from gasket specifications and vice
versa.
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Fig. 1. Gasket and housing chassis

In this study, chassis have been regarded as Bernoulli-Euler beams with a uni-
form cross section, two methods of a classical approach in which the problem is ana-
lyzed by replacing the contact pressure with several point loads and an application of
the boundary element method [1] have been derived, and numerical calculations and
a comparative consideration have been carried out. As for sandwich beams, a consid-
erable number of studies have been conducted, and various techniques have been pro-
posed, since Hoff and Mautner [2] analyzed this problem using the energy method.
Kenmochi and Uemura [3, 4] applied the multi-layer built-up theory to cases where
the bending rigidity of core material could not be neglected. Eigenvalue problems
of sandwich beams made of two elastic faces and a viscoelastic core were treated
by Sato et al. [5] and Galucio et al. [6]. Cases where the Winkler model could be
applied similarly to this paper, as the bending rigidity of core was very small, were
also dealt with [7, 8]. In addition, in recent years, various studies on the mechan-
ical behaviour of sandwich structures were reported [9–16]. In parallel with the
development of digital computer technology, several studies have also been made on
the bending analysis of elastic beams using the boundary element method [17–19].
The purpose of this study is to provide a practical guide for the design of sandwich
structures which consist of housing chassis and a gasket, and the analytical model
has been simplified in several ways. The bending rigidity of the equivalent beam can
be mostly identified from the material and shape of a chassis. A gasket of which the
width and thickness are uniform may be regarded as a 1-dimensional element, and
the Winkler model can be applied since the rigidity is sufficiently small compared
with those of chassis. In order to solve this problem, convenient methods in which
a distributed load is replaced with many point loads, including the boundary element
method, have been utilized. The uses of these methods are easier than getting the
analytical solution of a contact pressure, and the influence of discretization of a dis-
tributed load on the numerical results of beam stresses and deflections was minimal.
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2. Basic equations

The bending problem for beams as shown in Figure 2 is governed by the following
differential equation [20–22]:

d4y j(x)
dx4 =

f (x)
E j I j

( j = 1, 2) (1)

where y1 is the downward deflection of the lower beam (beam-1), y2 is the upward
deflection of the upper beam (beam-2), each E j is Young’s modulus of beam-1 or
-2, each I j is the moment of inertia of the cross-sectional area of beam-1 or -2, and
f (x) is the gasket reaction per unit length. Assuming that the reaction of the gasket at
an arbitrary point is in proportion to compression deformation amount of the gasket
at the same position, f (x) is expressed by

f (x) = k [y0 − y1(x)− y2(x)] (2)

where k is the elastic modulus dependent on material and shape of the gasket, and y0
is the compression deformation amount of the gasket at x = l. From the equilibrium
of forces of the system in vertical direction, the relation between f (x) and axial force
P becomes the following equation:

P/2 =
∫ l

0
f (x)dx (3)

where l is the half distance between supporting points.

Fig. 2. A schematic of double-beam system with elastic inner layer



34 K. Kimura

3. Classical approach

Expressing the contact pressure at x = e as f (e), the deflections of beams-1 and
-2 are given by the expression

y j(x) =
∫ l

0
H j(e,x) f (e)de ( j = 1, 2) (4)

where H j(e,x) are the deflections of the clamped-clamped beams subjected to unit
concentrated loads at two symmetric points x = ±e. From the beam bending
theory [13–15], H j(e,x) ( j = 1, 2) are given by

H jI(e,x) =
1

12E jI jl
(l − e)2(−3x2 +2el + l2) (−e ≤ x ≤ e) (5)

H jO(e,x) =
1

12E jI jl
[2lx3 −3(l2 + e2)x2 +6e2lx+(l2 −3e2)l2]

(x ≤−e, e ≤ x) (6)

where H jI(e,x) and H jO(e,x) are the inner and outer deflections of beam- j subjected
to unit point loads at two points x=±e, respectively. Substituting Eq. (4) into Eq. (2),
we obtain

f (x) = k
{

y0 −
∫ l

0
[H1(e,x)+H2(e,x)] f (e)de

}
(7)

In this section, in order to integrate Eqs. (3) and (7) numerically, equations

P/2 =
N

∑
i=1

f (ei)∆e (8)

f (x) = k

{
y0 −

N

∑
i=1

[H1(ei,x)+H2(ei,x)] f (ei)∆e

}
(9)

where ∆e = l/N, ei = (2i− 1)∆e/2, and N is the number of partitions are adopted.
Setting the calculation positions of contact pressure at ei (i = 1, 2, . . . , N), and
satisfying Eq. (8) and Eq. (9) at x = e1, e2, . . . , eN , the simultaneous algebraic equa-
tions with N + 1 unknowns are obtained. By solving these simultaneous equations,
f (ei) and y0 can be found. The approximate solutions of the beam deflections can be
calculated from the following equation:

y j(x) =
N

∑
i=1

H j(ei,x) f (ei)∆e ( j = 1, 2) (10)
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In the present method, since the contact pressure, which is actually a distributed
load, is replaced with a lot of point loads, derivatives of orders greater than or equal
to 3 of Eq. (10) are not continuous functions. Hence, in order to get shearing forces,
which require third-order derivatives of deflection functions, the third derivatives are
found by numerically differentiating the beam deflections obtained by the present
method. The stresses σ j on the bottom surface of beam-1 and the top surface of
beam-2, expressed by the following equation, can be acquired as continuous values
by differentiating Eq. (10) twice

σ j =
M jt j

2I j
=−

E jt j

2

(
d2y j

dx2

)
=−

E jI j

Z j

(
d2y j

dx2

)
( j = 1, 2) (11)

where each t j is the thickness of beam-1 or -2, and each Z j is the section modulus of
beam-1 or -2.

4. Application of boundary element method

In order to solve the differential equation (1), we start the boundary element
method formulation from the following weighted residual form of∫ l

0

(
d4y j

dx4 − f (x)
E j I j

)
y∗j dx ( j = 1, 2) (12)

Let us transform it through integration by parts. Here, l is the length of the span, and
y∗j are the weight functions selected according to the characteristic of becoming the
delta function by differentiating four times. It is defined as a function of the distance
between a source point ξ and a field point x [1]:

y∗j(ξ ,x) =
1

12E jI j
(2L3 + r3 −3Lr2) (13)

where r = |x− ξ |. After integrating Eq. (12) by parts four times, the equation of
deflections at a point ξ within the domain is obtained utilizing the property of the
delta function

y j(ξ ) =
[
y∗j(ξ ,x)Vj(x)−T ∗

j (ξ ,x)M j(x)+M∗
j (ξ ,x)Tj(x)

−V ∗
j (ξ ,x)y j(x)

]x=l

x=0
+

∫ l

0
f (x)y∗j(ξ ,x)dx ( j = 1, 2) (14)

Here, Tj are angles of deflections of the beams, M j are the bending moments of
the beams, and Vj are the shearing forces of the beams, which are related to the
derivatives of deflections as follows:

Tj =
dy j

dx
, M j =−E jI j

d2y j

dx2 , Vj =−E jI j
d3y j

dx3 (15)
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The quantities marked with an asterisk ∗ also have a similar relationship with the
above with regard to y∗j . It can be seen that Eq. (14) is described using 8× 2 values
of y j, Tj, M j and Vj at both ends (x = 0, l). Eight of these values are designated
by boundary conditions at both ends, while the rest are unknown. Accordingly, eight
independent equations are required to determine these unknown values. Four of them
are given from Eq. (14) by letting ξ → 0 and ξ → l. The remaining four are usually
obtained using the equation of angles of deflections. Differentiating Eq. (14) with
respect to ξ , the equation of angles is obtained as

Tj(ξ )≡
dy j(ξ )

dξ
=
[
ỹ∗j(ξ ,x)Vj(x)− T̃ ∗

j (ξ ,x)M j(x)+ M̃∗
j (ξ ,x)Tj(x)

−Ṽ ∗
j (ξ ,x)y j(x)

]x=l

x=0
+

∫ l

0
f (x) ỹ∗j(ξ ,x)dx ( j = 1, 2) (16)

The same operations letting ξ → 0 and ξ → l in the above yield four more equations.
We can then solve them as a system of simultaneous equations for the eight unknown
values. After that, the deflections and the angles at an interior point ξ can be calcu-
lated from Eqs. (14) and (16), respectively. Equations of bending moments M j and
shearing forces Vj at point ξ are obtained, according to demand, by differentiating
Eq. (16).

The fundamental solutions for the above beam flexure are given by Eq. (13) and
the following equations:

T ∗
j (ξ ,x) =

dy∗j(ξ ,x)

dx
=

1
4E jI j

r(r−2L)sgn(x−ξ ) (17)

M∗
j (ξ ,x) =−E jI j

d2y∗j(ξ ,x)

dx2 =− 1
2
(r−L) (18)

V ∗
j (ξ ,x) =−E jI j

d3y∗j(ξ ,x)

dx3 =− 1
2

sgn(x−ξ ) (19)

and

ỹ∗j(ξ ,x) =
∂y∗j(ξ ,x)

∂ξ
=− 1

4E jI j
r(r−2L)sgn(x−ξ ) (20)

T̃ ∗
j (ξ ,x) =

∂T ∗
j (ξ ,x)

∂ξ
=− 1

2E jI j
(r−L) (21)
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M̃∗
j (ξ ,x) =

∂M∗
j (ξ ,x)

∂ξ
=

1
2

sgn(x−ξ ) (22)

Ṽ ∗
j (ξ ,x) =

∂V ∗
j (ξ ,x)

∂ξ
= 0 (23)

where sgn(x− ξ ) = 1 when x > ξ , sgn(x− ξ ) = −1 when x < ξ , and sgn(x− ξ ) is
undefined when x = ξ . Here, L may be set to the span length l and may also be set to
zero.

In this section, in order to integrate Eqs. (2) and (3) numerically, equation

f (ξ ) = k [y0 − y1(ξ )− y2(ξ )] (24)

where

y j(ξ ) =
[
y∗j(ξ ,x)Vj(x)−T ∗

j (ξ ,x)M j(x)+M∗
j (ξ ,x)Tj(x)

−V ∗
j (ξ ,x)y j(x)

]x=l

x=0
+

N

∑
i=1

f (ei)y∗j(ξ ,ei)∆e ( j = 1, 2) (25)

and Eq. (8) are applied. Setting the contact pressure calculation positions at ei (i = 1,
2, . . . , N), and satisfying Eq. (8) and Eq. (24) at x = e1, e2, . . . , eN , the simultaneous
algebraic equations with N + 1 unknowns are obtained. Next, in order to determine
y j(0), M j(0), M j(l) and Vj(l) ( j = 1, 2) in Eq. (25), we consider the case of ξ → 0
and ξ → l in Eq. (25) and its derivative with respect to ξ . Assuming that ε is a small
positive constant, the following eight equations are obtained.

{
y j(0)
0

}
=

[
y∗j(ε, l) −T ∗

j (ε, l) M∗
j (ε, l) −V ∗

j (ε, l)
y∗j(l − ε, l) −T ∗

j (l − ε, l) M∗
j (l − ε, l) −V ∗

j (l − ε, l)

]

×


Vj(l)
M j(l)
0
0

−
[

y∗j(ε,0) −T ∗
j (ε,0) M∗

j (ε,0) −V ∗
j (ε,0)

y∗j(l − ε,0) −T ∗
j (l − ε,0) M∗

j (l − ε,0) −V ∗
j (l − ε,0)

]

×


0
M j(0)
0
y j(0)

+
N

∑
i=1

{
f (ei)y∗j(ε,ei)

f (ei)y∗j(l − ε,ei)

}
∆e ( j = 1, 2) (26)
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0
0

}
=

[
ỹ∗j(ε, l) −T̃ ∗

j (ε, l) M̃∗
j (ε, l) −Ṽ ∗

j (ε, l)
ỹ∗j(l − ε, l) −T̃ ∗

j (l − ε, l) M̃∗
j (l − ε, l) −Ṽ ∗

j (l − ε, l)

]

×


Vj(l)
M j(l)
0
0

−
[

ỹ∗j(ε,0) −T̃ ∗
j (ε,0) M̃∗

j (ε,0) −Ṽ ∗
j (ε,0)

ỹ∗j(l − ε,0) −T̃ ∗
j (l − ε,0) M̃∗

j (l − ε,0) −Ṽ ∗
j (l − ε,0)

]

×


0
M j(0)
0
y j(0)

+
N

∑
i=1

{
f (ei) ỹ∗j(ε,ei)

f (ei) ỹ∗j(l − ε,ei)

}
∆e ( j = 1, 2) (27)

By solving those simultaneous equations with N + 9 unknowns, f (ei), y0, y j(0),
M j(0), M j(l) and Vj(l) can be found. The beam deflections are analytically obtained
as continuous functions from Eq. (25). Here, if ε is smaller than l/10n (n is the
number of significant decimal digits on computer and about 15 in double), the loss
of trailing digits [23, 24] may occur. Signs of the fundamental solutions (19) and
(22) may thus become the opposites of right. Hence, the value of ε must be set,
considering the number of significant digits on the computer.

The stresses σ j on the bottom surface of beam-1 and the top surface of beam-
2 expressed by Eq. (11) can be obtained as continuous functions by differentiating
Eq. (25) twice. The second derivative of Eq. (25) is

d2y j(ξ )

dξ 2 =
dTj(ξ )

dξ
=
[∂ ỹ∗j(ξ ,x)

∂ξ
Vj(x)−

∂ T̃ ∗
j (ξ ,x)

∂ξ
M j(x)+

∂M̃∗
j (ξ ,x)

∂ξ

×Tj(x)−
∂Ṽ ∗

j (ξ ,x)

∂ξ
y j(x)

]x=l

x=0
+

N

∑
i=1

f (ei)
∂ ỹ∗j(ξ ,ei)

∂ξ
∆e ( j = 1, 2) (28)

in which

∂ 2y∗j(ξ ,x)

∂ξ 2 =
∂ ỹ∗j(ξ ,x)

∂ξ
=

1
2E jI j

(r−L) (29)

∂ 2T ∗
j (ξ ,x)

∂ξ 2 =
∂ T̃ ∗

j (ξ ,x)

∂ξ
=

1
2E jI j

sgn(x−ξ ) (30)

∂ 2M∗
j (ξ ,x)

∂ξ 2 =
∂M̃∗

j (ξ ,x)

∂ξ
= 0 (31)

∂ 2V ∗
j (ξ ,x)

∂ξ 2 =
∂Ṽ ∗

j (ξ ,x)

∂ξ
= 0 (32)
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5. Numerical results

Numerical calculations using the two solution methods shown in Sections 3 and
4 have been carried out, and it was proved that their numerical solutions were com-
pletely equal values by adopting the same methods for the discretization of contact
pressure distribution and for numerical integration. In order to determine the number
of partitions N, the convergence of the solution was investigated. As examples, the
compression deformation amount y0E1I1/(Pl3) of the gasket at x = l, the maximum
deflection y j(0)E1I1/(Pl3) and the maximum absolute stress −σ j(l) t13/(Pl) of the
beam in the case of kl4/(E1I1) = 1, E2I2/(E1I1) = 1, Z1/t13 = 1/6 and Z2/Z1 = 1
were calculated, changing the number of partitions from N = 2 into 3, 4, 5, 10, ...,
100. From Table 1, it can be seen that the numerical solutions of displacements are
fairly right values even in the case of N = 2, and the calculation result of stress is
sufficiently converged in the case that the number of partitions N is about 10. Hence,
numerical examples for the present problem were calculated in the number of parti-
tions N = 10.

In order to achieve the waterproof property of a product, the condition that the
contact pressures between the chassis and the gasket are greater than the design min-
imum pressure (y-value) on the entire circumference must be satisfied. Accordingly,
first, an example of contact pressure distributions and the relation between the gasket-
to-beam stiffness ratio and the minimum contact pressure is presented in graphical
form. Figure 3 is a numerical example of distributions of the dimensionless contact
pressure f l/P, and the relation between the gasket-to-beam stiffness ratio kl4/(E1I1)
and the minimum contact pressure f (0) l/P is indicated in Figure 4. Since the higher
the gasket elastic modulus is, the smaller the minimum contact pressure is, a greater
axial force or necessary and sufficient elasticity of the gasket used is required. Fig-
ure 4 shows that as E2I2/(E1I1) becomes larger, the curve of the present solutions
approaches that of the exact solutions when E2I2 = ∞, which is equivalent to a con-
tinuous beam on an elastic foundation [25], and thus it can be seen that the present
calculation results are valid.

Table 1. Convergence of the solution [kl4/(E1I1) = 1, E2I2/(E1I1) = 1, Z1/t13 = 1/6, Z2/Z1 = 1]

Number of Numerical solutions
partitions N y0E1I1/(Pl3) y j(0)E1I1/(Pl3) −σ j(l) t13/(Pl)

2 0.522059 0.020431 1.020727
3 0.521856 0.020422 1.002163
4 0.521823 0.020421 0.995743
5 0.521814 0.020420 0.992786

10 0.521808 0.020420 0.988858
20 0.521807 0.020420 0.987879
50 0.521807 0.020420 0.987605

100 0.521807 0.020420 0.987566
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Fig. 3. Contact pressure distributions [E2I2/(E1I1) = 1]

Fig. 4. Relationship between the gasket-to-beam stiffness ratio kl4/(E1I1) and the minimum contact
pressure f (0) l/P

In Figures 5 and 6, the distributions of the deflections y j and the surface stresses
σ j of the beams are indicated, respectively. As these are solutions to a problem in-
volving Eq. (2), the deflection distributions are dependent upon the contact pressure
distributions. As k becomes smaller, the curves of the present solutions approach
those of the exact solutions when k = 0, which is equivalent to a uniformly loaded
clamped beam [20], and thus it can be seen that the present calculation results are
valid. In the present methods, since the contact pressure, which is actually a dis-
tributed load, is replaced with point loads, the stress distributions are obtained as
continuous functions which have kinks at calculation points x = e1, e2, ..., eN . As can
be seen from Figure 6, the maximum absolute stresses appeared at a position x = l
subjected to bolt axial force. Hence, in chassis design, by increasing the stiffness
as it approaches a position of bolt hole, chassis strength can be raised efficiently.
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Fig. 5. Deflection distributions [E2I2/(E1I1) = 1]

Fig. 6. Surface stress distributions [E2I2/(E1I1) = 1, Z1/t13 = 1/6, Z2/Z1 = 1]

In Figure 7, the relation between the maximum absolute stress −σ j(l) t13/(Pl) and
the beam flexural rigidity ratio E2I2/(E1I1) in the case that lower and upper beams
have the same Young’s modulus and rectangular cross sections of the same width is
indicated. As E2I2/(E1I1) becomes larger, the present solutions are asymptotically
close to the exact solutions when E2I2 = ∞, and thus it can be seen that the effect
of stiffness ratio between two beams and a gasket on the calculation results has been
correctly evaluated. The maximum absolute stress on the greater side of the beam
flexural rigidity is smaller than that on the other side. Thus, focusing on the beam on
the smaller side of the flexural rigidity, design computation should be carried out.
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Fig. 7. Relationship between the maximum absolute stress −σ j(l) t13/(Pl) and the beam flexural
rigidity ratio E2I2/(E1I1) [Z1/t13 = 1/6, Z2/Z1 = [E2I2/(E1I1)]

2/3]: solid curves, beam-1; dashed
curves, beam-2; squares, beam-1 on elastic foundation (E2I2 = ∞)

6. Conclusions

Numerical methods for deflections and stresses of sandwich beams with a linear
elastic inner layer have been suggested. Substituting the model for a sandwich struc-
ture which consists of housing chassis and a gasket, and using those numerical meth-
ods, the maximum stress in chassis can be calculated from bolt axial force, gasket
elastic modulus and chassis stiffness.

The following conclusions can be drawn from this analysis:
1. The numerical result of stress presented in Table 1 is sufficiently converged in case
that the number of partitions is about 10. By using the present methods, the deflec-
tions and stresses of a sandwich beam with linear elastic inner layer can be easily
obtained in a comparatively small number of discretization nodes. From comparisons
with the exact solutions when k = 0 and when E2I2 = ∞, it can be regarded that the
present calculation results are correct.
2. Though the stress distributions are obtained as continuous functions, they have
kinks at calculation points. By increasing the number of partitions, the influence of
discretization becomes weaker, and sufficiently smooth curves of the stress distribu-
tions can be obtained even in case that the number of partitions is about 10.
3. In chassis design, by increasing the stiffness as it approaches a position of bolt
hole, chassis strength can be raised efficiently. Even though the stiffness of a face
beam is non-uniform, the present numerical method becomes available for strength
analysis by using suitable beam deflection equations (e.g., Eqs. (2) and (3) in Ref. 26
for a bilateral symmetrically tapered beam) instead of Eqs. (5) and (6).
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