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Abstract. The present work concerns to study of the steady, axisymmetric slow flow
of couple stress fluid through a rigid sphere in the transverse magnetic field. Boundary
conditions on the sphere surface are the zero couple stress condition and tangential slip
condition. The stream function, vorticity vector, and pressure term are obtained. The drag
acting on the sphere in the presence of MHD is calculated. Here, we graphically represented
the Hartmann number, couple stress, and slip parameters effect on the drag coefficient. Some
well-known results of the drag are deduced.
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1. Introduction

The study of couple stress fluid attracts the attention of many investigators due
to its application in engineering, extrusion of polymer fluid, industry, animal blood,
and solidification of liquid crystals. The fluids that disobey the linear relationship be-
tween the rate of strain and stress are called non-Newtonian fluids. The couple stress
fluid belongs to the non-Newtonian fluid category, which has distinct features, such
as size dependent effect. Stokes [1] introduced the theory of couple stress fluid in
1966. He considers the couple stress fluid at kinematic level to have no microstruc-
ture so that kinematics of motion is obtained by the velocity field only [2]. Devakar
et al. [3] obtained the analytical solution for flow of the couple stress fluid with slip
effect. Srinivasacharya et al. [4] investigated the couple stress fluid flow through two
parallel porous plates. Ashmawy [5] investigated the drag exerted by couple stress
fluid on the slip sphere. He noticed that whenever the slip parameter increases, drag
increases. Aparna et al. [6] obtained oscillating flow of a couple stress fluid through
a permeable sphere. Krishna Prasad and Priya [7] examined the slip effect on the
sphere in a porous medium filled with couple stress fluid. Pan et al. [8] studied
the transitions and bifurcations in couple stress fluid saturated porous media using
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a thermal non-equilibrium model. Alsudais et al. [9] investigated the creeping flow
of couple stress fluid confined between two eccentric spheres.

The consistent couple stress theory was introduced by Hadjesfandiari and
Dargush [10–13]. In this theory, the couple stress tensor is skew-symmetric. The con-
sistent couple stress theory is one of the new and important theories in the world of
technology. Many researchers are attracted to doing research using this theory. Sub-
ramaniam and Mondal [14] studied dynamics and rheology of the linear Maxwell
viscoelastic fluid model with the effect of couple stress. Karami et al. [15] inves-
tigated the solution of the flow of viscous nano fluid in a tapered artery using the
consistent the couple stress theory.

The magnetic properties and behavior of electrically conducting fluids are studied
in field of Magnetohydrodynamics (MHD). Hannes Alfven introduced the field of
MHD [16]. Hannes Alfven [16] also discussed that when a liquid is placed in the
magnetic field, every motion of liquid generates an E.M.F., which produces an elec-
tric current. This current gives mechanical force which changes the state of motion
of the liquid. Many researchers have been attracted to the study of magnetohydro-
dynamics because of its vast applications, such as solar physics, geophysics, indus-
try, and fusion energy research. MHD influences many man-made and natural flows.
Globe [17], and Gold [18] have obtained the effect of the magnetic field in an annular
channel and pipe flow. Saad [19] examined the flow of viscous fluid through a porous
sphere in a magnetic field based on the cell model technique. Sherief et al. [20]
observed the pipe flow of magneto-micropolar fluids with slip influence. Krishna
Prasad and Priya [21] investigated the Stokes flow through a slip sphere in the cell
model in the MHD. El-Sapa and Faltas [22] studied the mobilities of two spherical
particles immersed in a magneto-micropolar fluid.

The purpose of this work is to investigate the effect of a transverse magnetic field
on the couple stress fluid flow through a sphere. We consider that flow is an axisym-
metric steady type. Boundary conditions consist of the zero couple stress condition
and the slip condition. Stream function and pressure expression are solved. The drag
force acting on the rigid sphere in MHD is obtained, and some previous well-known
cases which are essential for this work are discussed. The drag coefficient depends
on the Hartmann number, couple stress, slip, and couple stress viscosity ratio param-
eters, and their effects are presented graphically.

2. Mathematical formulation

Consider the steady axisymmetric incompressible flow of magneto couple stress
fluid through a sphere of radius r = a which is fixed in a uniform velocity U . The mag-
netic field is applied in transverse direction to the fluid velocity vector q⃗,

as shown in Figure 1. Here, we consider small Reynold’s number Re =
Ua
ν

, i.e.,
only viscous term is exist. The following assumptions are [19, 21]: the fluid will not
have any micro structure, there is no body moment and body force, the magnetic
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field direction is normal to the flow, the Rem = Uaµhσ magnetic Reynold’s number
is sufficiently small, neglected the induced magnetic field, there is no external electric
fluid, Lorentz force F⃗ is defined by F⃗ = H⃗ × J⃗, where: µh – the magnetic permeabil-
ity, σ – the electric conductivity, H⃗, J⃗ represent the magnetic induction vector, and
electric current density, respectively F⃗ = µ

2
h σ (⃗q× H⃗)× H⃗.

Fig. 1. Sketch of the problem

The governing equations of an incompressible couple stress fluid with the effect
of magnetic field are given by [2, 19, 21]

∇ · q⃗ = 0, (1)

η∇×∇×∇×∇× q⃗−µ
2
h σ (⃗q× H⃗)× H⃗ +µ∇×∇× q⃗+∇p = 0, (2)

where p, q⃗, µ , µ
2
h , H⃗, σ represent the pressure, velocity, viscosity coefficient,

magnetic permeability of the fluid, magnetic induction vector, electric conductivity.
The couple stress viscosity are η and η

′, and they follow this restriction η ≥ η
′ [2].

The expression of stress and couple stress are [2]

ti j =−pδi j +2µdi j −
1
2

ei jkmsk,s,, (3)

Where δi j is the Kronecker delta, and ei jk is the alternating tensor

mi j = mδi j +4(η ′
ωi, j +ηω j,i), (4)

Where ωi, j presents the spin tensor.

The vorticity vector ω is defined as [5]

ωi =
1
2

ei jkqk, j. (5)
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The deformation rate tensor di j is given as [2]

di j =
1
2
(qi, j +q j,i). (6)

With the help of non-dimensional variables, we reformed the governing equations
into non-dimensionalise equations

r = ar̃, ∇ =
∇̃

a
, q⃗ =U ˜⃗q, H⃗ = H0

˜⃗H, p =
µU
a

p̃.

Inserting these terms in Eq. (1) and Eq. (2) and then neglecting the tildes

∇ · q⃗ = 0, (7)

∇p+∇×∇× q⃗−M2(⃗q× H⃗)× H⃗ +S−2
∇×∇×∇×∇× q⃗ = 0, (8)

Where length dependent parameter is S =

√
µa2

η
, if S tends to infinity, Eq. (8) repre-

sent the modified Stokes equation in presence of Lorentz’s force for non-polar fluid.

M =

√
µ2

h H2
0 σa2

µ
is the Hartmann number. If M = 0, Eq. (8) is Stokes approxima-

tion of the couple stress fluid.

Let (r,θ ,φ) represent spherical polar coordinate system, as we know that the fluid
flow is axisymmetric type, i.e., all the quantities do not depend on φ . Therefore,
the velocity vector q⃗ is

q⃗ = qr(r,θ)er +qθ (r,θ)eθ . (9)

The velocity components are expressed in the stream function which satisfies conti-
nuity equation,

qr =− 1
r2 sinθ

∂ψ

∂θ
, qθ =

1
r sinθ

∂ψ

∂ r
. (10)

Omitting the pressure from Eq. (7) using Eq. (10), we get

E2 (E2 − ℓ2
1
)(

E2 − ℓ2
2
)

ψ = 0, (11)

Where

E2 =
∂ 2

∂ r2 +
1
r2

∂ 2

∂θ 2 −
cotθ

r2
∂

∂θ
,
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ℓ2
1 =

S2 +S
√

S2 −4M2

2
,

ℓ2
2 =

S2 −S
√

S2 −4M2

2
.

3. Analytical solution

The stream function of linear partial differential Eq. (11) is given by [7]

ψ =
1
2
(
r2 +Ar−1 +B

√
rK3/2(ℓ1r)+C

√
rK3/2(ℓ2r)

)
sin2

θ , (12)

Where K3/2(·) is the modified Bessel function of the 2nd kind of order 3/2.
Arbitrary constants are A, B, and C.

By substituting Eq. (12) into Eq. (10), we get

qθ =
1

2

[
2−Ar−3 −Br−

3
2
(
ℓ1rK1/2(ℓ1r)+K3/2(ℓ1r)

)
−Cr−

3
2
(
ℓ2rK1/2(ℓ2r)+K3/2(ℓ2r)

)]
sinθ ,

(13)

qr =−
[
1+Ar−3 +Br−

3
2 K3/2(ℓ1r)+Cr−

3
2 K3/2(ℓ2r)

]
cosθ , (14)

The expression for the vorticity vector is

ωφ =
1
4

[
Br−

1
2 ℓ2

1K3/2(ℓ1r)+Cr−
1
2 ℓ2

2K3/2(ℓ2r)
]

sinθ , (15)

The pressure is

p = M2
(

r− 1
2

Ar−2
)

cosθ . (16)

4. Boundary conditions

In order to obtain unknowns A, B, and C, appropriate conditions are used. Bound-
ary conditions for the proposed model are vanishing of normal component of the
velocity, tangential slip condition, zero couple stresses [2, 5, 7, 21, 23, 24].

On the surface of sphere r = a

• Vanishing of normal velocity

qr = 0, (17)

• Slip condition

β1qθ = trθ , (18)
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• Zero couple stress on the boundary

mrφ = 0, (19)

Where β1 represent the slip coefficient, which is dependent on the fluid nature and
solid surface. If β1 → ∞, the sphere surface is a no-slip. If β1 = 0, the sphere surface
is a perfect slip.

The couple stress components are

mrφ =−r−
3
2
[(
(2η +η

′)ℓ2
1K3/2(ℓ1r)+ηℓ3

1rK1/2(ℓ1r)
)

B

+
(
(2η +η

′)ℓ2
2K3/2(ℓ2r)+ηℓ3

2rK1/2(ℓ2r)
)

C
]

sinθ , (20)

mφr =−r−
3
2
[(
(η +2η

′)ℓ2
1K3/2(ℓ1r)+η

′ℓ3
1rK1/2(ℓ1r)

)
B

+
(
(η +2η

′)ℓ2
2K3/2(ℓ2r)+η

′ℓ3
2rK1/2(ℓ2r)

)
C
]

sinθ , (21)

mθφ = r−
3
2
[(
(η −η

′)ℓ2
1K3/2(ℓ1r)

)
B+

(
(η −η

′)ℓ2
2K3/2(ℓ2r)

)
C
]

cosθ , (22)

The stress components are

trr =

[
−M2

(
r− 1

2
Ar−2

)
+6Ar−4 + r−

5
2
(
6K3/2(ℓ1r)+2ℓ1rK1/2(ℓ1r)

)
B

+r−
5
2
(
6K3/2(ℓ2r)+2ℓ2rK1/2(ℓ2r)

)
C
]

cosθ , (23)

trθ =
1
2

[
6Ar−4 + r−

5
2
((

6+ r2M2)K3/2(ℓ1r)+2ℓ1rK1/2(ℓ1r)
)

B

+r−
5
2
((

6+ r2M2)K3/2(ℓ2r)+2ℓ2rK1/2(ℓ2r)
)

C
]

sinθ , (24)

Applying the boundary conditions (17)-(19), we have

A =−
√

a((J1L1 + J2L2)L3 +(J3L1 + J4L2)L4)∆
−1, (25)

B = a−13ℓ2
4(aβ1 +2)((τ +2)L4 + ℓ4L3)∆

−1, (26)

C =−a−13ℓ2
3(aβ1 +2)((τ +2)L2 + ℓ3L1)∆

−1, (27)
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Where

∆ = a−
5
2 ((J5L2 + J6L1)L4 +(J7L2 + J1L1)L3),

J1 = ℓ3ℓ4(aβ1 +2)(ℓ2
4 − ℓ2

3),

J2 = ℓ4(ℓ
2
4(3(aβ1 +2)+a2M2)− ℓ2

3(aβ1 +2)(τ +2)),

J3 = ℓ3(ℓ
2
4(aβ1 +2)(τ +2)− ℓ2

3(3(aβ1 +2)+a2M2)),

J4 = (τ +2)(ℓ2
4 − ℓ2

3)(3(aβ1 +2)+a2M2),

J5 = a2M2(τ +2)(ℓ2
4 − ℓ2

3),

J6 = ℓ3(ℓ
2
4(τ +2)(aβ1 +2)−a2M2ℓ2

3),

J7 =−ℓ4(ℓ
2
3(τ +2)(aβ1 +2)−a2M2ℓ2

4),

L1 = K1/2(ℓ3), L2 = K3/2(ℓ3), L3 = K1/2(ℓ4), L4 = K3/2(ℓ4),

ℓ3 = ℓ1a, ℓ4 = ℓ2a, τ =
η ′

η
.

5. Drag force

The drag exerted by couple stress fluid on the sphere in the presence of magnetic
and slip effect is evaluated using the simple formula

Fz = 2πa2
∫

π

0
r2 (trr cosθ − trθ sinθ)

∣∣
r=a sinθdθ , (28)

Inserting the values of Eq. (23) and Eq. (24) values in this formula, we have

Fz =
2
3

πµaUM2 (−2a3 +A−2a
√

aL2B−2a
√

aL4C
)
. (29)

6. Special cases

Case 1: If M = 0 i.e., ℓ2 = 0 and ℓ1 = S, the drag exerted by the couple stress fluid
through a sphere in the absence of MHD is given by

Fz =−6πµaU
(

1+
M1(ℓ5 +1)−β2

M1 +β2(ℓ5 +3)

)
, (30)

Where

β2 = aS, M1 =
τ +2

τ +β2 +2
, ℓ5 =

aβ1

µ
.
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This result is same as Ashmawy [5].
Case 2: If ℓ5 → ∞ in Eq.(30), i.e., the drag acting on the no-slip sphere is

Fz =−6πµaU
(

1+
M1

β2

)
. (31)

This result agrees with V.K. Stokes’ result [25].
Case 3: Drag force exerted by the consistent couple stress fluid on the sphere in the
presence of tangential slip and MHD, i.e., τ =−1, we get

Fz =−2πµaUM2a2 ((J1L3 + J3L4)L1 +(J2L3 + J4L4)L2))∆
−1
1 , (32)

Where

∆1 = (J1L3 + J6L4)L1 +(J5L4 + J7L3)L2.

Case 4: If M = 0 i.e., ℓ2 = 0 and ℓ1 = S in Eq. (32), the drag acting on the sphere
in the absence of MHD is

Fz =−6πµaU
(

1+
(ℓ5 +1)−β2(β2 +1)

1+β2(ℓ5 +3)(β2 +1)

)
. (33)

Case 5: If ℓ5 → ∞ in Eq. (33), the drag force reduces to

Fz =−6πµaU
(

β 2
2 +β2 +1

β2(β2 +1)

)
. (34)

This result match with the result of Hadjesfandiari and Dargush [10].
Case 6: If β2 → ∞, i.e., η → 0 in (30), the drag is

Fz =−6πµaU
(
ℓ5 +2
ℓ5 +3

)
. (35)

Eq. (35) represents the drag acting on the slip sphere in the Newtonian fluid.
Case 7: If β2 → ∞ and ℓ5 → ∞ in Eq. (30), the drag experienced by the viscous fluid
on the no-slip sphere (Stokes law) is obtained as

F0 =−6πµaU. (36)

7. Results and discussion

The normalized force DN defined as the ratio of drag acting on the sphere in couple
stress fluid with influence of a transverse magnetic field and tangential slip to the drag
F0 acting on the no-slip sphere in a viscous fluid. The variation of DN with respect to
different parameters is shown graphically in Figures 2-5.

The normalized drag force DN is a function of various parameters as follows:
(i) Slip parameter: β1,
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(ii) Couple stress viscosity ratio parameter: τ ,
(iii) Couple stress parameter: S,
(iv) Hartmann number (magnetic parameter): M.

Figure 2 represents the variation of DN versus the slip β1 for varying values of S
with fixed value of M = 0.1 and τ = 1. We have seen that when S increases, the force
DN decreases, and after S = 1, the difference between the variation of drag force
corresponding to other S is very small.

The effect of τ on the normalized drag force DN is discussed in Figure 3. It shows
that a decrease in values of couple stress viscosity ratio parameter τ , results a de-
creasing value of drag force. Figure 4 presents the variation of DN against the couple
stress parameter S for varying values of β1 with M = 0.001 and τ = 1. We observed
that when we increase the value of slip parameter β1, the value of the drag parameter
slightly increases. Figure 5 shows the variation of drag force DN against slip param-
eter β1 for different values of the Hartmann number M. When the value of Hartmann
number M slightly increases, it results in an increased value in the drag DN .

When τ =−1 i.e., η
′ =−η represents the consistent couple stress theory [10–13].

In this case, the normalized drag force DN depends on the slip parameter β1, couple
stress parameter S, and magnetic parameter M. Figure 6 presents the variation of DN

against the slip parameter β1 for varying parameter S with τ = −1 and M = 0.1.
We have noticed that increasing the values of S, the drag force decreases. Figure 7
shows the variation of DN against couple stress parameter S for varying values of the
β1 with τ = −1 and M = 0.001. It is observed that when we increase the values of
β1, the drag force slightly increases due to the influence of couple stress viscosity
ratio parameter τ = −1. The variation of DN against slip parameter β1 for varying
values of the Hartmann number M with τ = −1 and S = 3 is discussed in Figure 8.
Additionally, we found that increasing the values of M results in an increase in the
drag force.

Fig. 2. Drag DN variation versus β1 for M = 0.1
and τ = 1

Fig. 3. Drag DN variation against β1 for M = 0.1
and S = 1
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Fig. 4. Drag DN variation versus S for
M = 0.001 and τ = 1

Fig. 5. Drag DN variation against β1 for S = 3
and τ = 1

Fig. 6. Drag DN variation versus β1 for M = 0.1
and τ =−1

Fig. 7. Drag DN variation versus S for
M = 0.001 and τ =−1

Fig. 8. Drag DN variation against β1 for S = 3
and τ =−1

8. Conclusions

The couple stress fluid flow through a sphere fixed with the influence of a tangen-
tial slip and magnetic effect is solved analytically. The drag exerted by the couple
stress fluid on the rigid sphere in the presence of a transverse magnetic field is
obtained. We discussed some well-known cases from the past. We noticed from
the figure that when couple stress parameter increases, normalized drag force
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decreases. The normalized drag force increases as the magnetic parameter increases.
The fluid velocity decreases in the presence of the Lorentz force. Due to the Lorentz
force effect, when we increase the value of M, the result is a normalized increase in
drag force. For consistent couple stress fluid, we observed that when a couple stress
parameter increases, the normalized drag decreases, and when the slip parameter
increases, drag increases.
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