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Abstract. The aim of this work is to design a robust predictive attitude controller when
the disturbance is not known and it is modelled based on the stochastic theory and not
directly from the environment and its laws. The paper starts with a brief introduction about
the interest of attitude control, the state of the art, the limitations and the objectives of the
research work. Then it moves on the control model chosen for the work. The main part is
related to the modelling of the stochastic disturbance and the actuation of the controller.
The results obtained match the initial idea about the capability of the controller to work
under an unknown disturbance torque. Indeed, the graphical results show, for all the different
conditions considered, that the required attitude is always reached, meaning that the aim of
this work was achieved.
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1. Introduction

Attitude control has been a crucial topic that engineers have focused on since the
very first days of space exploration. Ensuring that a spacecraft is pointing the right
direction is very important for many reasons, which might also differ based on the
mission.

Model-based predictive control has been used and studied for many years. Its
power is associated with the prediction of the future behaviour of the controlled sys-
tem determining implicitly the control law to be applied. The foundation of MPC
dates back to the late 70s and its potential was not only associated with the prediction
but also to its capability to deal with non-linear models. With the development of new
technologies, the computational time to solve a problem, which at the beginning was
really high, began to decrease while the applicability of the MPC increased [1].
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The outcomes of the studies over MPC, such as [2–4] underline the reliability and
power of the Model-based Predictive Control in a lot of various environments.

The most difficult problem for the attitude control is linked to the disturbances that
are associated with space missions, such as the gravity gradient, the solar radiation
pressure, the magnetic field, the air drag, etc. These behave differently based on the
different orbits that are considered and the dimensions of the spacecraft; thus wider
modelling of these perturbations might not be straightforward as well as deal with all
of them interacting together.

The purposes of this work are first of all to find an appropriate stochastic model
of the attitude dynamics accounting for disturbance torque effects, then to propose
a predictive disturbance torque estimation method, propose a robust predictive atti-
tude control method based on predictive disturbance torque estimation and perform
computational validation of the proposed control method using various realistic sce-
narios with actual spacecraft data.

The report will start introducing the control model used for the work, the theory
of the attitude dynamics of a spacecraft and the application of the model to our case.
Then the stochastic model for the environment will be introduced to test the control
and observe how it will react and the results obtained.

2. Control model

2.1. State model

The content of this section is a brief summary about nonlinear predictive control
[5–7].

The method taken into consideration for this discussion considers the system in
the form {

ẋxx1 = fff 1(xxx)
ẋxx2 = fff 2(xxx)+BBB2(xxx)uuu

(1)

By considering the vector xxx = [xxx111,xxx222]
T , fff =

(
fff 1
fff 2

)
, GGG =

(
0

BBB2

)
the system can be

rewritten as

ẋxx = fff (xxx)+GGG(xxx)uuu (2)

Note that the application of this model to our case is going to be presented in
the next section. At this point what we want to do is to control the state xxx using the
predictive control, considering that fff 111, fff 222 and BBB are non-linear. Considering Eq. (1),
it is possible to define ri (with i = 1,2) as the relative degree of freedom of the state
vector. In other words ri, that is a scalar value, is the minimum number of times that
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I need to differentiate xi in order to obtain explicitly in its expression the dependence
from the control uuu.

At this point, to retrieve the expression of the state at time t +h, the Taylor expan-
sion is introduced using the Lie derivative, in particular it is considered vvv(xxx(t),h) =
= (v1, ...,vn)

T where

vi = hL0
f ( fi)+

h2

2
L1

f ( fi)+ ...+
hr

i

ri
Lri−1

f ( fi), i = 1, ...,n (3)

where the time-step h > 0 is a real number and fi is the i-th component of fff and
the Lie derivative is expressed as

L0
f ( fi) = fi

L1
f ( fi) =

∂ fi

∂xxx
fff (4)

L2
f ( fi) =

∂L1
f ( fi)

∂xxx
fff

so that the approximation of x at t +h is

xxx(t +h)≈ xxx(t)+ vvv(xxx(t),h)+Λ(h)WWW [xxx]uuu(t) (5)

with Λ ∈ Rn×n being a diagonal matrix with elements defined as

λii(h) =
hri

ri
, i = 1, ...,n (6)

and WWW ∈ Rn×m is a matrix whose generic row i is such that

wi = {Lg1[L
ri−1
f (xi)], ...,Lgm[L

ri−1
f (xi)]}, i = 1, ...,n (7)

where the functions g1, ...,gm are the columns of matrix GGG and the Lie derivative
with respect to g j is defined in a similar way as in Eq. (4). Once the tracking error is
defined as eee(t) = xxx(t)− qqq(t), and once the reference function qqq(t) is approximated
using a Taylor expansion up to ri-th order

qqq(t +h)≈ qqq(t)+ddd(t,h) (8)

di(t,h) = hq̇i(t)+
h2

2
q̈i(t)+ ...+

hr
i

ri
q(ri)

i (t), i = 1, ...,n (9)

the performance index is presented as

J[uuu(t)] =
1
2
[eee(t +h)]T QQQ[eee(t +h)]+

1
2

uuuT (t)RRRuuu(t) (10)
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Minimizing this expression with respect to uuu(t) yields to the controller

uuu(t)=−{[ΛΛΛ(h)WWW (xxx)]T QQQΛΛΛ(h)WWW (xxx)+RRR}−1×{[ΛΛΛ(h)WWW (xxx)]T QQQ[eee(t)+vvv(xxx, t)−ddd(t,h)]}
(11)

2.2. Attitude dynamics

To describe the attitude motion of our spacecraft, we will use the Euler equations
where we will consider the angular rates and the quaternions as follows:

ω̇1 = b1ω3ω2

ω̇2 = b2ω1ω3

ω̇3 = b3ω2ω1

(12)

q̇qq =
1
2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0

qqq (13)

2.3. Model Predictive Control law

Taking into consideration the system in Equation (1), we can define xxx1 = qqq and
xxx2 = ωωω , then we can add the control to Equation (12) such that

ω̇1 = b1ω2ω3 +u1

ω̇2 = b2ω1ω3 +u2

ω̇3 = b3ω2ω1 +u3

(14)

And we obtain our state system as{
q̇qq = MMM(xxx)qqq
ω̇ωω = fff (xxx)+ III3uuu

(15)

where III3 is the identity matrix.

2.3.1. Defining matrices W, ΛΛΛ and vector v

In our case, since the maximum order of the Taylor expansion is 2, the matrix
WWW coming from Equation (11) can be built evaluating the double derivative of both
ωωω and qqq and use it in the expansion. Combining the results for quaternions and
for the angular velocities and considering that this control law does not include
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the disturbance torque because it is assumed not to be known, we can write the value
of WWW , ΛΛΛ and vvv:

WWW =
1
2



−q2 −q3 −q4
q1 −q4 q3
q4 q1 −q2
−q3 q2 q1

2 0 0
0 2 0
0 0 2


(16)

ΛΛΛ =
h
2



h 0 0 0 0 0 0
0 h 0 0 0 0 0
0 0 h 0 0 0 0
0 0 0 h 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2


(17)

vvv =
{

vvv1
vvv2

}
(18)

where

vvv1 = hq̇qq+
h2

2
CCC(ωωω)qqq (19)

vvv2 = h


b1ω2ω3
b2ω1ω3
b3ω1ω2

 (20)

3. Control with stochastic disturbances

The aim of this work is to study the behaviour of the controller introduced in
Section 2 when it is subjected to stochastic disturbances [7].

The system that we are now considering is the following:{
q̇qq = MMM(xxx)qqq
ω̇ωω = fff (xxx)+ III3uuu+DDDωwwwω

(21)

that can be condensed in:

ẋxx = fff (xxx)+BBBuuu+DDDwww (22)
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The main difference between the deterministic and the stochastic model is that in
this second case we also have the dependence on the variable www, which is a random
vector such that its first derivative has a normal distribution. Therefore, it is built as
the density function knowing the mean value and the covariance matrix. In our model

www ∈ R3 and DDD ∈ R7×3

As we can see from Equation (21), the disturb www acts only on the angular velocity,
this happens because qqq is a fictitious operator that has no physical meaning, so it is
impossible that a real perturbation directly modify it. Consequently, the matrices DDD
and BBB are defined as follows

DDD =



0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


BBB =

[
0004×3

III3

]

The estimation of the covariance matrix WWW comes from the availability of a set of
measurements ξ1,ξ2, ...,ξn at times t1, t2, ..., tn, from which

WWW = E[(ξ −ξ )(ξ −ξ )T ] (23)

where E is the expected value and ξ is the mean of the measurements. This can be
solved using the Monte Carlo approximation such that:

WWW =
1

N −1

N

∑
k=1

(ξk −ξ )(ξk −ξ )T (24)

3.1. Stochastic model

Dealing with stochastic processes requires the solution of Stochastic Differential
Equations (SDEs) to retrieve the new equation of motion.

A stochastic process can be seen as a process where what happens at time tk is
completely disconnected and unrelated from what happens at time tk−1 and at time
tk+1.

In our case, in order to create the model of the stochastic disturbance, it was nec-
essary to provide a covariance matrix and a mean value so that the probability density
function related to them would be evaluated. The covariance matrix was built based
on some measurements coming from the environment, as well for the mean value.
In a real case those measurements would come from real data that a spacecraft has
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detected in its orbit. In our discussion the data are coming from a random sampling
of a deterministic torque defined as:

mmme =



a1 sin
(

4π

T
t
)

a2 sin
(

4π

T
t
)

a3 sin
(

4π

T
t
)


(25)

where ai are the amplitudes, T is the period and t is the simulation time.
The choice of a sinusoidal function as a disturb is related to the fact that it is

a simplified representation of the real disturbances that are acting on the spacecraft
such as the Gravity Gradient, the Solar Radiation Pressure and the Magnetic Field.
Indeed, as a first analysis, the magnitude of the amplitudes a1, a2 and a3 is the same
as the magnitude of the Gravity Gradient in a LEO orbit that is 10−5.

Concretely the values selected for the amplitudes ai in Equation (25) are:

a1 −6 ·10−5

a2 1 ·10−5

a3 8 ·10−5

Instead, the period chosen is T = 100 s.
At each time step, 200 out of 10000 values of the torque were sampled in a com-

pletely random manner, then the mean value and the covariance matrix were evalu-
ated using the command mean and cov on Matlab®. Later the normal density function
was determined in order to obtain the values of the stochastic torque www with the com-
mand mvnpdf, and it was differentiated according to the theory of the SDEs where
we considered the stochastic derivative as DDD(wk −wk−1).

In the meantime the ODE associated with spacecraft was solved independently.
At the end, the two parts of the derivative were summed together in order to obtain
the state of the system.

4. Data

For the simulation, the controller is supposed to be mounted on a Rapid Eye –
Micro-spacecraft, whose moments of inertia are considered to be:

I1 19.5 kgm2

I2 19 kgm2

I3 12.6 kgm2
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For the validation of the control, three different cases were taken in to considera-
tion, each one with its own initial and desired attitude1.

ωωω0 θθθ 0 ωωωdes θθθ des

Case 1 [0;0;0] [0.1;0.2;0] [0;0;0] [0;0;0]

Case 2 [0;0;0] [0.1;0.2;0] [0;0;0]
[

π

10
;
π

6
;
π

3

]
Case 3 [0;0;0] [0.1;0.2;0] [0;0;0]

[
π

10
;−π

6
;
π

3

]
As it is possible to see, for all the three cases considered, both initial and desired

attitude have zero angular rates, this is because the controller at first it is evaluated
just in a rest-to-rest slew manoeuvre.

For all of the three cases, the time step h considered is:

h 0.01 s

and the simulation time:

t0 0 s
t f 10000 s

5. Optimal choice of the matrices Q and R

To build a robust controller, it is necessary to perform an optimal choice of the
matrices QQQ and RRR.

5.1. Matrix Q

The most important part is the matrix QQQ because it is the one associated with
the error to be minimized in Equation (10), which means that its optimal choice leads
the control to act faster and better on the spacecraft.

5.1.1. Restricted LQR

To find the matrix QQQ, the restricted LQR problem is used. Indeed, if the normal
LQR works in the whole domain, but since in our case the system is not control-
lable in all state space, such as for angles more than 3π or less than −3π that are
not reached by the spacecraft, the restricted one finds the matrix PPP just around the
operating domain. The matrix QQQ is later built as follows

QQQ = λmaxIII7×7 (26)

1 Note that the attitude is expressed using Euler angles, but in the code these are converted in
quaternions for all the calculations.
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where λmax is the maximum eigenvalue of the matrix PPP and III7×7 is a 7× 7 identity
matrix.

For our case the value of the maximum eigenvalue of PPP is

λmax = 4.46×1015 (27)

5.1.2. Robustness

The robustness of the solution of λmax comes from the fact that the LQR problem
was solved considering a system that requires more energy to be controlled than the
real one, meaning that if the controller is capable of controlling the worse system,
it is certainly able to deal with the better one. This can be obtained by shifting the
matrix AAA associated with our system of a value α , so that

AAAworse = AAA+αIII

5.2. Matrix R

The matrix R does not affect the controller in the convergence, as it only affects
the magnitude of the control torque. This is because, as we can see in Equation (10),
it acts directly on the control uuu, meaning that its choice cannot influence the error eee.
Indeed the matrix RRR can be chosen freely.

The fact that RRR acts on the control means that the greater its diagonal elements are
the slower the stabilization will be and viceversa. This characteristic is really useful
because it allows the designer to better match the mission requirements. Indeed, if
we imagine a spacecraft with humans onboard the stabilization should not be fast,
otherwise the crew will be affected by strong accelerations on their body. Moreover,
the structural limits might also be considered, for instance a large satellite with a big
mass might be not capable of performing a fast de-tumbling.

6. Results

6.1. Case 1

In this section the results for the simulation of Case 1 (Fig. 1) are presented, where
both the initial and desired values for angular velocities are zero. For the angles,
the initial condition θθθ 0 = [0.1;0.2;0] and attitude to reach is θθθ des = [0;0;0].

6.2. Case 2

In this section the results for the simulation of Case 2 (Fig. 2) are presented, where
both the initial and desired values for angular velocities are zero. For the angles,
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Fig. 1. Euler angles

the initial condition is θθθ 0 = [0.1;0.2;0] and attitude to reach is θθθ des =
[

π

10
;
π

6
;
π

3

]
.
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Fig. 2. Euler angles

6.3. Case 3

In this section the results for the simulation of Case 3 (Fig. 3) are presented, where
both the initial and desired values for angular velocities are zero. For the angles,
the initial condition is θθθ 0 = [0.1;0.2;0] and attitude to reach is θθθ des =

[
π

10
;−π

6
;
π

3

]
.

6.3.1. Comments

In all the three conditions, the convergence of the attitude with the desired Euler
angles is reached rapidly and smoothly, without any oscillations, bouncing or strong
changes. This happens because the restricted LQR problem provides a matrix that
increases the robustness of the control.
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Fig. 3. Euler angles

7. Conclusions and future work

From the results obtained, it is possible to say that the controller is successful in
stabilizing the spacecraft in the condition tested, under an unknown stochastic torque.

Indeed, the results presented before are the same obtained in the preliminary
step of the evaluation of the controller under a deterministic torque, defined with
the same sinusoidal function used to sample and build the stochastic model. This
result has been very important for our discussion because it meant that the stochastic
model used for the external torque was well-designed and well-representative of the
”sampled” one.

The use of a sinusoidal function implies that its behaviour is highly dependent on
the choice of amplitudes and period. For this reason, the controller was also tested
with different values of these quantities and was found to be unaffected by these
variations, always guaranteeing the stabilization even under strong and unrealistic
conditions2.

Knowing that it is virtually almost impossible to perfectly model the real environ-
ment where a spacecraft will operate, considering the disturbance torque as unknown
and consequently representing it using the stochastic theory was proven to lead to
good performances of the controller.

In the end it was confirmed that the controller performs better and stronger when
the environment is modelled as stochastic and the matrix QQQ is the optimal one. More-
over, the future of this work might be associated with the testing using real mea-
surements of the disturbances coming from an in-orbit spacecraft for the validation
of the stochastic model, or with the studying of its behaviour when it is working
with attitude determination sensors and actuators. Furthermore, the method can be
also extended to deal with the current issues of controlling attitude, such as the use of
magnetic torquers in LEOs that would allow to save a great amount of fuel, exploiting
the external torques, such as the ones coming from the GG and the magnetic field.

2 The results are not presented in this paper because not directly related to the topic.
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