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Abstract. In this article, we present a novel hybrid approach, by combining the Sawi trans-
form with the homotopy perturbation method, to achieve the approximate and analytic
solutions of nonlinear fractional differential equations (ODE as well as PDE) using the
time-fractional Caputo derivative. The proposed algorithm is faster and simple compared to
other iterative methods. The Sawi transform is used along with the homotopy perturbation
method to accelerate the convergence of the series solution. The results discussed using
calculations, graphs and tables are compatible for comparison with other known methods
like the residual power series method and the exact solution which are discussed in the
literature.
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1. Introduction and preliminaries

There are several well-known integral transforms in the literature, viz. G-transform
[1], Sumudu transform [2], Sawi transform [3], Elzaki transform [4], Pourreza trans-
form [5], natural transform [6], Mohand transform [7], Aboodh transform [8], and
Kamal transform [9]. These transformations are used to solve various functional
equations such as fractional order integral equations, ordinary, and partial type frac-
tional differential equations [10–15]. However, these transformations alone are not
enough capable to deal with nonlinear equations because of the difficulties due to the
involvement of nonlinear terms.

In recent years, many hybrid methods have been introduced that combine the inte-
gral transforms with semi-analytic techniques such as the Sumudu Adomian decom-
position method [16], Laplace variational iteration method [17], residual power series
method (RPSM) [18, 19], homotopy perturbation general transform method [20] and
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homotopy analysis Sumudu transform method [21] to solve the fractional differential
equation (FDE). In continuation of the study, the authors here in the present work
introduce another powerful method as a combination of the homotopy perturbation
method (HPM) [22,23] and the Sawi transform [3], and call it: the homotopy pertur-
bation Sawi transform method (HPSTM), which is capable of dealing with general
FDE in an efficient manner, and can be applied not only on various nonlinear wave
equations, oscillatory equations with discontinuities and boundary value problems,
but it can also deal with different kinds of nonlinear equations.
Certain well-known definitions and results are used in this article are as follows:

Definition 1 The Caputo fractional derivative [24] for function ϕ (ζ ,τ) with order
ω > 0 is

0Dω
τ [ϕ (ζ ,τ)] =


1

Γ(n−ω)

∫
τ

0
(τ − t)n−ω−1 ∂ nϕ(ζ , t)

∂ tn dt, n−1 < ω < n

∂ nϕ(ζ , t)
∂ tn , ω = n ∈ N.

(1)

Definition 2 The Sawi transform (ST) [3] for the function f (τ) is

S{ f (τ)}= 1
v2

∫
∞

0
f (τ)e−

τ

v dτ,τ ≥ 0,κ1 ≤ v ≤ κ2, (2)

for a given function f (τ) ∈ A; where A = { f (τ) : ∃M,κ1,κ2 > 0, | f (τ)| < Me
|τ|
κ j , if

τ ∈ (−1) j × [0,∞)} and κ1,κ2 may be any finite or infinite values, and M must be
a finite value. 2

Theorem 1 The Sawi transform of integer order derivative is given by Mohand [3]
as

S
{

ϕ
(n) (ζ ,τ)

}
=

1
vn S{ϕ (ζ ,τ)}−

n−1

∑
k=0

1
vn+1−k ϕ

k (ζ ,0). (3)

where ϕ
(n)(ζ ,τ) are such that,

∣∣∣ϕ(n)(ζ ,τ)
∣∣∣ < Me

|τ|
κ j with M as a finite and posi-

tive value and κ1,κ2 are suitable positive numbers, making ϕ
(n)’s an exponential

order. 2

Remark Working of the Homotopy perturbation method (HPM) [22,23], is described
as below:

We consider a general form of fractional differential equation [25] as

Dnω
τ ϕ (ζ ,τ)+Rϕ (ζ ,τ)+Nϕ (ζ ,τ) = f (ζ ,τ) ,0 < ω ≤ 1,τ > 0,ζ ∈ R, (4)
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where f (ζ ,τ) is a continuous function and Dτ

(
=

∂

∂τ

)
is the differential operator,

R(ϕ) are linear terms, and N(ϕ) are nonlinear terms of continuous function ϕ (ζ ,τ),
subject to initial conditions

ϕ (ζ ,0) = φ0(ζ ),
∂ϕ (ζ ,0)

∂τ
= φ1(ζ ), ...,

∂ n−1ϕ (ζ ,0)
∂τn−1 = φn−1(ζ ). (5)

Now, applying homotopy technique [22] with perturbation parameter leads to the
solution of (4), that is

ϕ (ζ ,τ) = lim
p→1

∞

∑
n=0

pn
ϕn (ζ ,τ) = lim

p→1
[ϕ0 (ζ ,τ)+ p1

ϕ1 (ζ ,τ)+ p2
ϕ2 (ζ ,τ)+ ...],

= ϕ0(ζ ,τ)+ϕ1 (ζ ,τ)+ϕ2 (ζ ,τ)+ .... (6)

2. Main results

Theorem 2 The Sawi transform of Caputo fractional derivative of ϕ (ζ ,τ) is given
by

S{Dnω
τ ϕ (ζ ,τ)}= 1

vnω
S{ϕ (ζ ,τ)}−

n−1

∑
k=0

1
vnω+1−k Dk

τϕ (ζ ,0) . (7)

PROOF We can write the Caputo derivative (1) as

Dβ

τ ϕ (ζ ,τ) = D−(n−β )
τ h(ζ ,τ) , where h(ζ ,τ) = ϕ

n (ζ ,τ),n−1 < β ≤ n, (8)

now the Sawi transform of the Riemann-Liouville fractional integral is

S
{

Dβ

τ ϕ (ζ ,τ)
}
=

1
v−(n−β )

S{ϕ (ζ ,τ)} , (9)

from both of the above equations (8) and (9)

S
{

Dβ

τ ϕ (ζ ,τ)
}
= S

{
D−(n−β )

τ h(ζ ,τ)
}
=

1
v−(n−β )

S{h(ζ ,τ)} , (10)

operating the Sawi transform as defined in (3)

S{h(ζ ,τ)}= S{ϕ
n(ζ ,τ)}= 1

vn S{ϕ (ζ ,τ)}−
n−1

∑
k=0

1
vn+1−k ϕ

k (ζ ,0). (11)

Substituting equation (11) into (10)

S
{

Dβ

τ ϕ (ζ ,τ)
}
=

1
v−(n−β )

[
1
vn S{ϕ (ζ ,τ)}−

n−1

∑
k=0

1
vn+1−k ϕ

k (ζ ,0)

]
, (12)

=
1
vβ

S{ϕ (ζ ,τ)}−
n−1

∑
k=0

1
vβ+1−k ϕ

k (ζ ,0). (13)
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For 0 < ω ≤ 1 considering β = nω , leads to the desired result (7). ■

2.1. Homotopy perturbation using Sawi transform method (HPSTM)

We consider a general form of fractional-order nonlinear differential equation as
(4) with initial conditions (5). First, by operating Sawi transform on (4), we have

S{Dnω
τ ϕ (ζ ,τ)}=−S{Rϕ (ζ ,τ)}−S{Nϕ (ζ ,τ)}+S{ f (ζ ,τ)}, (14)

then using (7), we get

1
vnω

S{ϕ (ζ ,τ)}−
n−1

∑
k=0

1
vnω+1−k Dk

τϕ (ζ ,0) =−S{Rϕ (ζ ,τ)}−S{Nϕ (ζ ,τ)}

+S{ f (ζ ,τ)}, (15)

i.e.

S{ϕ (ζ ,τ)}=
[
vφ0(ζ )+ v2

φ1(ζ )+ ...+ vn
φn−1(ζ )

]
− vnωS{Rϕ (ζ ,τ)}

− vnωS{Nϕ (ζ ,τ)}+ vnωS{ f (ζ ,τ)}, (16)

now taking the inverse Sawi transform of (16) gives

ϕ (ζ ,τ) = G(ζ ,τ)−S−1 [vnωS{Rϕ (ζ ,τ)}+ vnωS{Nϕ (ζ ,τ)}] , (17)

Applying the Homotopy perturbation method [22] to (17), we get

∞

∑
i=0

pi
ϕi (ζ ,τ) = G(ζ ,τ)− p

[
S−1

[
vnωS{R

∞

∑
i=0

pi
ϕi (ζ ,τ)+N

∞

∑
i=0

pi
ϕi (ζ ,τ)}

]]
.

(18)

In (18), nonlinear terms are decomposed using He’s polynomial [23],

Nϕ (ζ ,τ) =
∞

∑
n=0

pnHn(ϕ), (19)

where Hn(ϕ0,ϕ1,ϕ2, ...,ϕn) =
1
n!

[
∂ n

∂ pn N

(
∞

∑
i=0

pi
ϕi

)]
p=0

,n = 0,1,2, ....

Applying (19) into (18), we find that

∞

∑
i=0

pi
ϕi (ζ ,τ) =G(ζ ,τ)− p

[
S−1

[
vnωS{R

∞

∑
i=0

pi
ϕi (ζ ,τ)+

∞

∑
i=0

piHi(ϕ)}

]]
. (20)
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From the above equation (20), we get

p0 : ϕ0 (ζ ,τ) = G(ζ ,τ) ,

p1 : ϕ1 (ζ ,τ) =−S−1 [vnωS{Rϕ0 (ζ ,τ)}+ vnωS{H0(ϕ)}] ,
p2 : ϕ2 (ζ ,τ) =−S−1 [vnωS{Rϕ1 (ζ ,τ)}+ vnωS{H1(ϕ)}] ,
...
pn : ϕn (ζ ,τ) =−S−1 [vnωS{Rϕn−1 (ζ ,τ)}+ vnωS{Hn−1(ϕ)}] .

(21)

Therefore, the solution of (4) leads to (6).

2.2. Convergence of HPSTM

Theorem 3 [26] Let the Banach space B ≡ C ([a,b]× [0,T ]) be defined on rect-

angular interval [a,b]× [0,T ]. Then equation (6) defined as ϕ (ζ ,τ) =
∞

∑
k=0

ϕk (ζ ,τ)

is convergent series, if ϕ0 ∈ B is bounded and ||ϕk+1|| ≤ δ ||ϕk||,∀ϕk ∈ B, and for
0 < δ < 1. 2

PROOF Considering the sequence
{

Aq
}

as partial sums of equation (6), we have

A0 = ϕ0 (ζ ,τ) ,

A1 = ϕ0 (ζ ,τ)+ϕ1 (ζ ,τ) ,

A2 = ϕ0 (ζ ,τ)+ϕ1 (ζ ,τ)+ϕ2 (ζ ,τ) ,

...

Aq = ϕ0 (ζ ,τ)+ϕ1 (ζ ,τ)+ϕ2 (ζ ,τ)+ ...+ϕq (ζ ,τ) . (22)

To prove this theorem, we next prove that {Aq}∞
q=0 is a Cauchy sequence in B. Now,

we take ∥∥Aq+1 −Aq
∥∥= ∥∥ϕq+1 (ζ ,τ)

∥∥
≤ δ

∥∥ϕq (ζ ,τ)
∥∥

≤ δ
2∥∥ϕq−1 (ζ ,τ)

∥∥
...

≤ δ
q+1 ∥ϕ0 (ζ ,τ)∥ . (23)

Therefore, for any q,n ∈ N, such that q > n, we get∥∥Aq −An
∥∥= ∥∥(Aq −Aq−1)+(Aq−1 −Aq−2)+(Aq−2 −Aq−3)+ ...+(An+1 −An)

∥∥
≤
∥∥Aq −Aq−1

∥∥+∥∥Aq−1 −Aq−2
∥∥+∥∥Aq−2 −Aq−3

∥∥+ ...+∥An+1 −An∥
≤ δ

q ∥ϕ0 (ζ ,τ)∥+δ
q−1 ∥ϕ0 (ζ ,τ)∥+ ...+δ

n+1 ∥ϕ0 (ζ ,τ)∥
≤ β ∥ϕ0 (ζ ,τ)∥ , (24)
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where β =
(1−δ q−n)

(1−δ )
δ

n+1.

Since ϕ0 (ζ ,τ) is bounded, therefore ∥ϕ0 (ζ ,τ)∥< ∞.
For 0 < δ < 1, as the value of n increases and n → ∞ leads to β → 0, therefore

lim
n→∞
q→∞

∥∥Aq −An
∥∥= 0. (25)

Hence,
{

Aq
}∞

q=0 is a Cauchy sequence in B.
It concludes that the solution of equation (6) as a series is convergent. ■

Theorem 4 If the approximate series solution of equation (4) is
n

∑
k=0

ϕk (ζ ,τ), then

the maximum absolute error is estimated by∥∥∥∥∥ϕ (ζ ,τ)−
n

∑
k=0

ϕk (ζ ,τ)

∥∥∥∥∥≤ δ n+1

1−δ
∥ϕ0 (ζ ,τ)∥ , (26)

where δ is a number such that
∥ϕk+1∥
∥ϕk∥

≤ δ . 2

PROOF From equation (24) in Theorem (3), we have∥∥Aq −An
∥∥≤ β ∥ϕ0 (ζ ,τ)∥ , whereβ =

(1−δ q−n)

(1−δ )
δ

n+1. (27)

Here,
{

Aq
}∞

q=0 → ϕ (ζ ,τ) as q → ∞ and from (22), we get An =
n

∑
k=0

ϕk (ζ ,τ),

∥∥∥∥∥ϕ (ζ ,τ)−
n

∑
k=0

ϕk (ζ ,τ)

∥∥∥∥∥≤ β ∥ϕ0 (ζ ,τ)∥ , (28)

Now,
(
1−δ

q−n)< 1 since 0 < δ < 1, then∥∥∥∥∥ϕ (ζ ,τ)−
n

∑
k=0

ϕk (ζ ,τ)

∥∥∥∥∥≤ δ n+1

1−δ
∥ϕ0 (ζ ,τ)∥ . (29)

Hence, the proof. ■

3. Application of the HPSTM and numerical discussions

Example 3.1 Nieto [27] studied the time-fractional logistic equation as a nonlinear
ODE defined as below:

Dω
τ ϕ (τ) = ϕ (τ) [1−ϕ (τ)] , 0 < ω ≤ 1,τ > 0; (30)



On the semi-analytic technique to deal with nonlinear fractional differential equations 23

where the initial condition is

ϕ(0) = ϕ0. (31)

For ϕ0 =
1
2

and ω = 1, the exact solution [27] is

ϕ (τ) =
1

1+ e−τ
. (32)

On applying the Sawi transform to equation (30), this gives

S{ϕ
ω
τ (τ)}= S{ϕ (τ)}−S

{
ϕ

2(τ)
}

; (33)

further by using (7) and (33), we get

1
vω

S{ϕ (τ)}− 1
vω+1 ϕ(0) = S{ϕ (τ)}−S

{
ϕ

2(τ)
}
. (34)

On considering (31), this leads to

S{ϕ (τ)}= ϕ0

v
+ vωS

{
ϕ (τ)−ϕ

2(τ)
}
. (35)

And the inverse Sawi transform of (35) holds

ϕ (τ) = ϕ0 +S−1 [vωS
{

ϕ (τ)−ϕ
2(τ)

}]
. (36)

Applying the homotopy perturbation method to (36), leads to (20), which is

∞

∑
i=0

pi
ϕi(τ) = ϕ0 + pS−1

[
vωS

{
R

(
∞

∑
i=0

pi
ϕi

)
−

∞

∑
i=0

piHi(ϕ)

}]
, (37)

where nonlinear terms of equation (36) are solved by He’s polynomial Hi(ϕ) [23], as

H0(ϕ) = ϕ0
2,

H1(ϕ) = 2ϕ0ϕ1,

H2(ϕ) = 2ϕ0ϕ2 +2ϕ1
2,

... (38)
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From (37) and (38), we find that

p0 : ϕ0(τ) = ϕ0, (39)

p1 : ϕ1(τ) = S−1 [vω S{ϕ0(τ)}− vω S{H0(ϕ)}] ,

=
(
ϕ0 −ϕ

2
0
) τω

Γ(ω +1)
, (40)

p2 : ϕ2(τ) = S−1 [vω S{ϕ1(τ)}− vω S{H1(ϕ)}] ,

= S−1
[

vω S
{(

ϕ0 −ϕ
2
0
) τω

Γ(ω +1)

}
− vω S{2ϕ0ϕ1}

]
,

=
(
ϕ0 −3ϕ

2
0 +2ϕ

3
0
) τ2ω

Γ(2ω +1)
, (41)

...

Therefore, we can write (30) as

ϕ (τ) =
∞

∑
n=0

ϕn(τ) = ϕ0(τ)+ϕ1(τ)+ϕ2(τ)+ϕ3(τ)...,

ϕ (τ) = ϕ0 +
(
ϕ0 −ϕ

2
0
) τω

Γ(ω +1)
+
(
ϕ0 −3ϕ

2
0 +2ϕ

3
0
) τ2ω

Γ(2ω +1)

+
(
ϕ0 −3ϕ

2
0 +4ϕ

3
0 −6ϕ

4
0
) τ3ω

Γ(3ω +1)
+ .... (42)

For the sake of simplicity, ϕ0 =
1
2

and ω = 1 in equation (42), becomes

ϕ (τ) =
1
2
+

τ

4
− τ3

48
+

τ5

480
− ...

=
1

1+ e−τ

=
1

1+E1(−τ)
. (43)

Thus, from (32) and (43), we see that the HPSTM gives an exact solution of the time-
fractional logistic equation in the form of the Mittag-Leffler function [28, 29].

Example 3.2 Considering this nonlinear time-fractional Fornberg-Whitham equation
reported by Gupta and Singh [30] as follows:

ϕ
ω
τ −ϕζ ζ τ +ϕζ = ϕϕζ ζ ζ −uϕζ +3ϕζ ϕζ ζ , 0 < ω ≤ 1, t > 0,ζ ∈ R, (44)

with initial condition

ϕ (ζ ,0) =
4
3

e
ζ

2 . (45)
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When ϕ = 1, the exact solution of (44), given by Zhang et al. [19], is

ϕ (ζ ,τ) =
4
3

e
(

ζ

2 −
2τ

3

)
. (46)

Applying, the Sawi trasform to (44), we get

S{ϕ
ω
τ }−S{ϕζ ζ τ}+S{ϕζ}= S{ϕϕζ ζ ζ}−S{ϕϕζ}+3S{ϕζ ϕζ ζ}, (47)

using (7), we have[
1

vω
S{ϕ (ζ ,τ)}− 1

vω+1 ϕ (ζ ,0)
]
−S{ϕζ ζ τ}+S{ϕζ}=S{ϕϕζ ζ ζ}−S{ϕϕζ}

+3S{ϕζ ϕζ ζ}, (48)

on considering the initial condition (45) gives

S{ϕ (ζ ,τ)}= 4
3v

e
ζ

2 + vωS
{

ϕζ ζ τ −ϕζ +ϕϕζ ζ ζ −ϕϕζ +3ϕζ ϕζ ζ

}
, (49)

and hence the inverse Sawi transform of (49) holds

ϕ (ζ ,τ) =
4
3

e
ζ

2 +S−1 [vωS
{

ϕζ ζ τ −ϕζ +ϕϕζ ζ ζ −ϕϕζ +3ϕζ ϕζ ζ

}]
. (50)

Employing the HPM leads to (20), which gives

∞

∑
i=0

pi
ϕi (ζ ,τ) =

4
3

e
ζ

2 + pS−1

[
vωS

{
R

(
∞

∑
i=0

pi
ϕi

)
+

∞

∑
i=0

piHi(ϕ)

}]
, (51)

where nonlinear terms of equation (50) are solved by He’s polynomial Hi(u) [23], as

H0(ϕ) = ϕ0ϕ0ζ ζ ζ −ϕ0ϕ0ζ +3ϕ0ζ ϕ0ζ ζ ,

H1(ϕ) = ϕ1ϕ0ζ ζ ζ +ϕ0ϕ1ζ ζ ζ −ϕ1ϕ0ζ −ϕ0ϕ1ζ +3ϕ1ζ ϕ0ζ ζ +3ϕ0ζ ϕ1ζ ζ ,

H2(ϕ) = ϕ2ϕ0ζ ζ ζ +2ϕ1ϕ1ζ ζ ζ +ϕ0ϕ2xxx −ϕ2ϕ0ζ −2ϕ1ϕ1ζ −ϕ0ϕ2ζ

+3ϕ2ζ ϕ0ζ ζ +6ϕ1ζ ϕ1ζ ζ +3ϕ0ζ ϕ2xx,

... (52)
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From (51) and (52), we find that

p0 : ϕ0 (ζ ,τ) =
4
3

e
ζ

2 ,

p1 : ϕ1 (ζ ,τ) = S−1 [vωS{Rϕ0 (ζ ,τ)}+ vωS{H0(ϕ)}] ,

=− 2
3

e
ζ

2
τω

Γ(ω +1)
,

p2 : ϕ2 (ζ ,τ) = S−1 [vωS{Rϕ1 (ζ ,τ)}+ vωS{H1(ϕ)}] ,

=− 1
6

e
ζ

2

[
τω

Γ(ω +1)
− τ2ω

Γ(2ω +1)

]
,

p3 : ϕ3 (ζ ,τ) = S−1 [vωS{Rϕ2 (ζ ,τ)}+ vω {H2(ϕ)}] ,

=− 1
24

e
ζ

2

[
τω

Γ(ω +1)
−2

τ2ω

Γ(2ω +1)
+

2
3

τ3ω

Γ(3ω +1)

]
,

... (53)

As per (6), the approximate solution of (45) can be given by

ϕ (ζ ,τ) =
∞

∑
n=0

ϕn(ζ ,τ) = ϕ0(ζ ,τ)+ϕ1(ζ ,τ)+ϕ2(ζ ,τ)+ϕ3(ζ ,τ)..., (54)

which eventually takes the form

ϕ (ζ ,τ) =
1
3

e
ζ

2

[
4− 85

32
τω

Γ(ω +1)
+

27
32

τ2ω

Γ(2ω +1)
− 7

48
τ3ω

Γ(3ω +1)
+

1
3

τ4ω

Γ(4ω +1)
− ...

]
.

(55)

4. Results and conclusion

The semi-analytical solutions of the time-fractional logistic equation and F-W
equation are discussed in this paper using the HPSTM and found that the obtained
results are in a good match for the given values of parameters. The comparison of
the solution of the time-fractional logistic equation and F-W equation with different
fractional order ω are given in Figure 1. Table 1 shows the logistic equation result
at some fractional order ω . Looking to the above graph, the proposed method gives
us the exact solution to the logistic equation. The dynamics of the F-W equation at
different fractional orders ω = 0.2, 0.4, 0.6, and 0.8 along with ω = 1 and exact solu-
tion are shown in Figure 2. Further, the comparative output of the F-W equation using
present HPSTM, RPSM, and analytic solutions are given in Table 2. The HPSTM can
be viewed as a good refinement of the existing HPM method blended with the Sawi
transform and can become a popular one with its widespread applicability, reliability
and computational ease. Thus, satisfactory results are achieved through the HPSTM,
which are more suitable as compared to the RPSM technique in its class. Clearly,
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the main advantage of the HPSTM is to obtain solutions to complicated problems
conveniently.

(a) Time-fractional logistic equation (b) Time-fractional F-W equation at ζ = 1

Fig. 1. Comparision of the solution of the fractional logistic and F-W equation by using the HPSTM
method with different fractional values ω

(a) ω = 0.2 (b) ω = 0.4 (c) ω = 0.6

(d) ω = 0.8 (e) ω = 1 (f) Exact solution

Fig. 2. The behaviour of the F-W equation by the HPSTM with different order ω
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Table 1. The solution of the logistic equation at different fractional order ω

τ ω = 0.01 ω = 0.02 ω = 0.03 ω = 0.04 ω = 0.05
0.1 0.7279291460 0.7246049271 0.7212790875 0.7179533744 0.7146295346
0.2 0.7292915794 0.7273104082 0.7253074187 0.7232835548 0.7212397720
0.3 0.7300911275 0.7289034084 0.7276874339 0.7264438047 0.7251731306
0.4 0.7306595666 0.7300382954 0.7293865849 0.7287048401 0.7279934728
0.5 0.7311011391 0.7309212251 0.7307105298 0.7304693304 0.7301979088

Table 2. The absolute error in the solution of the F-W equation by the HPSTM and the RPSM [19]

ζ τ Exact HPSTM RPSM |Exact-HPSTM| |Exact-RPSM|

–10

0.1 0.00840452864 0.008406038080 0.008402202315 1.50944E-06 2.32632E-06
0.2 0.00786249525 0.007865130666 0.007820475300 2.63541E-06 4.20200E-05
0.3 0.00735541923 0.007361937038 0.007238748282 6.51781E-06 1.16671E-04
0.4 0.00688104606 0.006898983932 0.006657021266 1.79379E-05 2.24025E-04
0.5 0.00643726666 0.006480594855 0.006075294249 4.33282E-05 3.61972E-04

–5

0.1 0.10238811940 0.102406508144 0.102359778960 1.83887E-05 2.83404E-05
0.2 0.09578480094 0.095816906847 0.095272893116 3.21059E-05 5.11908E-04
0.3 0.08960735032 0.089686753511 0.088186007271 7.94032E-05 1.42134E-03
0.4 0.08382830210 0.084046830091 0.081099121369 2.18528E-04 2.72918E-03
0.5 0.07842196221 0.078949807683 0.074012235501 5.27845E-04 4.40973E-03

1

0.1 2.0565203530 2.05688970049 2.05595111975 3.69347E-04 5.69233E-04
0.2 1.9238891560 1.92453402034 1.91360721245 6.44864E-04 1.02819E-02
0.3 1.7998117440 1.80140659916 1.77126330515 1.59486E-03 2.85484E-02
0.4 1.6837364570 1.68812570906 1.62891939670 4.38925E-03 5.48171E-02
0.5 1.5751472170 1.58574927730 1.48657548890 1.06021E-02 8.85717E-02

5

0.1 15.1957442500 15.19847338630 15.19153816050 2.72914E-03 4.20609E-03
0.2 14.2157249100 14.22048984063 14.13975104413 4.76493E-03 7.59739E-02
0.3 13.2989099400 13.31069441818 13.08796392776 1.17845E-02 2.10946E-01
0.4 12.4412231400 12.47365556636 12.03617680286 3.24324E-02 4.05046E-01
0.5 11.6388511600 11.71719036881 10.98438968283 7.83392E-02 6.54461E-01
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