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Abstract. Within this work, we discuss the existence of solutions for a coupled system
of linear fractional differential equations involving Caputo-Fabrizio fractional orders. We
prove the existence and uniqueness of the solution by using the Picard-Lindelöf method
and fixed point theory. Also, to compute an approximate solution of problem, we utilize
the Adomian decomposition method (ADM), as this method provides the solution in
the form of a series such that the infinite series converge to the exact solution. Numer-
ical examples are presented to illustrate the validity and effectiveness of the proposed method.
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1. Introduction

Fractional order differential equations are generalizations of ordinary differential
equations of non-integer order. They have attracted considerable interest due to the
non-localization properties of the fractional derivatives contrary to the integer-order
derivatives [1–3]. Indeed, fractional differential equations play an important role in
the various fields of engineering and sciences including applications in physics, eco-
nomics, chemistry, biology, and more, see [4–6]. The theory of existence of linear and
nonlinear problems in the field of fractional differential equations has been studied
and cited by many researchers. For an in-depth study of various linear and nonlin-
ear problems in fractional differential equations and applications, see [7–9]. Another
interesting field of recent research is the coupled system of fractional differential
equations. It has been proven to be more accurate and realistic that have many appli-
cations in real-world problems such as: [10–13]. However, due to the complexities of
the nonlinear term, many fractional differential equations do not have exact analytic
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solutions. Because of this difficulty, many researchers developed numerical schemes
to find an approximate solution. There are numerous methods for calculating the nu-
merical solution of fractional differential equations and integral equations, such as the
iteration techniques [14], numerical bifurcation [15], difference methods [16], etc.

The Adomian decomposition method (ADM) was first introduced by George Ado-
mian in the beginning of 1980’s and developed in [17]. The method is a kind of
algorithm, and it is an advantageous method for solving a linear and nonlinear differ-
ential equations of fractional order, which gives the approximate solution and even
exact solution. This method has many advantages, such as: it’s quite straight forward
to write computer codes, it is also avoids the cumbersome integration of the Picard
method, and it can solve some nonlinear problems which cannot be solved by other
numerical methods.

In 2015, Caputo and Fabrizio [18] suggested a new fractional derivative with
non-singular kernel. On the other hand, the Caputo-Fabrizio fractional derivative has
many significant properties, such as its ability to describe matter hetrogeneities and
configuration with different scales, many works studied the existence and unique-
ness solution of boundary value problems involving such operator [19–21]. In the
articles [22–24] several methods and issues for solving and modeling solutions to
problems in applied mathematics and proofs for important theories were presented.
Moreover, the authors investigated the existence and uniqueness results for some cou-
pled systems involving C-F derivatives, for instance see [25–29] and the references
cited therein.

In this paper, we will provide a state of the art that can be easily used as a basis to
familiarize oneself with couple system of linear fractional order of Caputo-Fabrizio
type with boundary conditions, as follows:

D (α) r(t) = c1r(t)+ c2w(t)+ f (t), t ∈ Ω := [0,1]
D (α) w(t) = c3r(t)+ c4w(t)+g(t), t ∈ Ω := [0,1]
r(0) = w(0) = 0,

(1)

where 0 < α < 1 is a real number, D (α) is the new fractional derivative of Caputo
Fabrizio, f ,g : Ω → R are given continuous functions, and ci real constants and
i = 1,2,3,4.

The paper is organized as follows: In the second Section, we present some useful
definitions and lemmas of fractional calculus. In the third Section, the Picard-Lindelöf
technique and the Banach fixed point theorem is applied to obtain uniqueness of
solutions for system (1). In the articles [17, 29, 30], several methods and issues for
solving and modeling solutions to problems in applied mathematics and proofs
for important theories were presented, and we choose in the fourth Section,
the Adomin Decomposition Method (ADM) to construct approximate solutions
of the problem (1). A numerical example is given in last Section to illustrate our
main results.
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2. Preliminaries

We begin this section by reviewing the definitions of the Caputo-Fabrizio frac-
tional derivative and integral and investigate their main characteristics as well.

Definition 1 [18] The CF (Caputo-Fabrizio) fractional derivative of α order for
a function s ∈ H1(a,b), b > a and α ∈]0,1[ is given as

D (α) s(t) =
M(α)

1−α

∫ t

a
s′(η)exp

[
−α(t −η)

1−α

]
dη , (2)

the respective CF fractional integral is defined by:

Iα
a s(t) =

1
M(α)

[
(1−α)(s(t)− s(a))+α

∫ t

a
s(η)dη

]
, (3)

where M(α) is a normalization function with the main properties of
M(0) = M(1) = 1. 2

Lemma 1 [20] Let γ ∈ (n,n+1),n = ⌊γ⌋⩾ 0. Assume that s ∈ C n[a,b], then those
statements hold:

1. if s(a) = 0, then D (γ) (Iγ
a s(t)) = s(t).

2. Iγ
a

(
D (γ) s(t)

)
= s(t)+

n

∑
i=0

ait i, ai ∈ R i = 0,1, . . . ,n. 2

3. Study of the associated linear system

In the following, we suppose the function M(α) = 1.

Lemma 2 Let 0<α < 1, r,w∈C 1 (Ω) , f ,g : Ω→R be given continuous functions,
and ci real constants and i = 1,2,3,4. Then the solution of linear coupled system (1)
is given by

r(t) = K(t)+(1−α)(c1r(t)+ c2w(t))+α

∫ t

0
(c1r(η)+ c2w(η))dη ,

w(t) = G(t)+(1−α)(c3r(t)+ c4w(t))+α

∫ t

0
(c3r(η)+ c4w(η))dη ,

(4)

where K(t)= (1−α)( f (t)− f (0))+α

∫ t

0
f (η)dη , and G(t)= (1−α)(g(t)−g(0))+

α

∫ t

0
g(η)dη . 2
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Proof From Lemma 1, we can reduce Eq. (1) to the following equivalent integral
equations:

r(t)+a1 = (1−α)(c1r(t)+ c2w(t)+ f (t)− f (0))

+α

∫ t

0
(c1r(η)+ c2w(η)+ f (η))dη ,

w(t)+a2 = (1−α)(c3r(t)+ c4w(t)+g(t)−g(0))

+α

∫ t

0
(c3r(η)+ c4w(η)+g(η))dη ,

(5)

where a1,a2 ∈ R. Using initial conditions r(0) = w(0) = 0, we obtain a1 = a2 = 0.
Thus (5) reduces to

r(t) = (1−α)(c1r(t)+ c2w(t)+ f (t)− f (0))+α

∫ t

0
(c1r(η)+ c2w(η)+ f (η))dη ,

w(t) = (1−α)(c3r(t)+ c4w(t)+g(t)−g(0))+α

∫ t

0
(c3r(η)+ c4w(η)+g(η))dη .

(6)

Then the equation (6) can be written as follows

r(t) = (1−α)( f (t)− f (0))+α

∫ t

0
f (η)dη +(1−α)(c1r(t)+ c2w(t))

+α

∫ t

0
(c1r(η)+ c2w(η))dη ,

w(t) = (1−α)(g(t)−g(0))+α

∫ t

0
g(η)dη +(1−α)(c3r(t)+ c4w(t))

+α

∫ t

0
(c3r(η)+ c4w(η))dη .

(7)

Hence, the unique solution of problem (1) is

r(t) = K(t)+(1−α)(c1r(t)+ c2w(t))+α

∫ t

0
(c1r(η)+ c2w(η))dη ,

w(t) = G(t)+(1−α)(c3r(t)+ c4w(t))+α

∫ t

0
(c3r(η)+ c4w(η))dη .

The proof is complete. ■

3.1. Existence and uniqueness of the solution

Here we analyze the existence of a unique solution using the Picard-Lindelöf
technique and the fixed point theory.
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Let (r0(t),w0(t)) = (K(t),G(t)); then the Picard iteration is defined by

ri+1(t) = (1−α)(c1ri(t)+ c2wi(t))+α

∫ t

0
(c1ri(η)+ c2wi(η))dη ,

wi+1(t) = (1−α)(c3ri(t)+ c4wi(t))+α

∫ t

0
(c3ri(η)+ c4wi(η))dη .

(8)

In order to show the existence of a unique solution, let us define

L1(t,r,w) = c1r+ c2w,

L2(t,r,w) = c3r+ c4w,
(9)

and λ (t) = (r(t),w(t)).

Lemma 3 Let L1,L2 : Ω×R2 → R be a continuous function. Then L1(t,r,w) and
L2(t,r,w) are contraction with respect to r and w if

µ1 < 1 and µ2 < 1, (10)

where µ1 = max(|c1|, |c2|), µ2 = max(|c3|, |c4|). 2

Proof Let ri, wi ∈ R, i = 1,2 and for all t ∈ Ω, we have

|L1(t,r1,w1)−L1(t,r2,w2)|⩽ |c1| ∥ r1(t)− r2(t) ∥+|c2| ∥ w1(t)−w2(t) ∥,
⩽ max(|c1|, |c2|)(∥ r1(t)− r2(t) ∥+ ∥ w1(t)−w2(t) ∥)
⩽ µ1 ∥ λ1(t)−λ2(t) ∥ .

In a similar manner:

|L2(t,r1,w1)−L2(t,r2,w2)|⩽ µ2 ∥ λ1(t)−λ2(t) ∥ .

Hence,

∥ L1(t,r1,w1)−L1(t,r2,w2) ∥⩽ µ1 ∥ λ1(t)−λ2(t) ∥,
∥ L2(t,r1,w1)−L2(t,r2,w2) ∥⩽ µ2 ∥ λ1(t)−λ2(t) ∥ .

(11)

which, in view of (10), implies that L1(t,r,w,) and L2(t,r,w) are contraction with
respect to r and w. ■

Theorem 1 Let L1,L2 : Ω×R2 → R be a continuous function. Then, the system (1)
has a unique solution in Ω, provided by

µ = µ1 +µ2 < 1,

where µ1 = max(|c1|, |c2|), µ2 = max(|c3|, |c4|). 2

Proof In order to show the existence of a unique solution, we have L1(t,r,w) and
L2(t,r,w) are contraction with respect to r and w. Then the Picard operator can there-
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fore be defined as follows:

θ(λ (t)) = λ0 +(1−α)ϕ(t,λ (t))+α

∫ t

0
ϕ(η ,λ (η))dη , (12)

where ϕ(tλ (t))= (L1(t,r(t),w(t)),L2(t,r(t),w(t))) and λ0 =(K(t),G(t)). It is worth
noting that the solution of the fractional problem is bounded. In addition, since L1
and L2 are contraction, we get

∥ ϕ(t,λ1(t))−ϕ(t,λ2(t)) ∥⩽ µ ∥ λ1(t)−λ2(t) ∥, (13)

where µ = µ1 +µ2 < 1. Also, by using Eq. (4), we obtain

∥ λ (t)−λ0 ∥=∥ (1−α)ϕ(t,λ (t))+α

∫ t

0
ϕ(η ,λ (η))dη ∥

⩽ (1−α) ∥ ϕ(t,λ (t)) ∥+α

∫ t

0
∥ ϕ(η ,λ (η)) ∥ dη

⩽ (1−α +αt)µ

⩽ µ,

(14)

where µ < 1.
Now, by using the definition of the Picard operator (12), we prove the contraction

property of θ . We have

∥ θ(λ1(t))−θ(λ2(t)) ∥=∥ (1−α)(ϕ(t,λ1(t))−ϕ(t,λ2(t)))

+α

∫ t

0
(ϕ(η ,λ1(η))−ϕ(η ,λ2(η)))dη ∥

⩽ (1−α) ∥ ϕ(t,λ1(t))−ϕ(t,λ2(t)) ∥

+α

∫ t

0
∥ ϕ(η ,λ1(η))−ϕ(η ,λ2(η)) ∥ dη

⩽ (1−α)µ ∥ λ1(t)−λ2(t) ∥

+αµ

∫ t

0
∥ λ1(η)−λ2(η) ∥ dη

⩽ (1−α +αt)µ ∥ λ1(t)−λ2(t) ∥
⩽ µ ∥ λ1(t)−λ2(t) ∥,

(15)

since µ < 1 by Eq. (14). Therefore, the defined operator θ is a contraction. Thus, by
Banach’s fixed point theorem [30], the operator θ has a unique fixed point, which is
the unique solution of (1). This completes the proof. ■

4. Numerical method

In this section, we apply the Adomian Decomposition Method (ADM) [17] in
order to implement the fractional system (1) in an appropriate manner.
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In the decomposition method, we usually express the solution r(t) and w(t) of the
integral equation (4) in a series form defined by

r(t) =
∞

∑
i=0

ri(t) and w(t) =
∞

∑
i=0

wi(t). (16)

Substituting the decomposition (16) into both sides of (4) yields

∞

∑
i=0

ri(t) = K(t)+(1−α)

(
c1

∞

∑
i=0

ri(t)+ c2

∞

∑
i=0

wi(t)

)

+α

∫ t

0

(
c1

∞

∑
i=0

ri(η)+ c2

∞

∑
i=0

wi(η)

)
dη ,

and

∞

∑
i=0

wi(t) = G(t)+(1−α)

(
c3

∞

∑
i=0

ri(t)+ c4

∞

∑
i=0

wi(t)

)

+α

∫ t

0

(
c3

∞

∑
i=0

ri(η)+ c4

∞

∑
i=0

wi(η)

)
dη .

So the above discussed scheme for the determination of the components r0(t),r1(t),
r2(t), ... and w0(t),w1(t), w2(t), ... of the solution r(t) and w(t) of Eq. (4) respectively
can be written in a recursive manner by

r0(t) = K(t),

ri+1(t) = (1−α)(c1ri(t)+ c2wi(t))+α

∫ t

0
(c1ri(η)+ c2wi(η)) dη , i ⩾ 0,

and

w0(t) = G(t),

wi+1(t) = (1−α)(c3ri(t)+ c4wi(t))α
∫ t

0
(c3ri(η)+ c4wi(η)) dη , i ⩾ 0.

5. Numerical illustrations

In this section, we apply the technique discussed in the previous section to find
the numerical solution of the linear integral equations and compare our results with
exact solutions.We used MATLAB to solve these examples.
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Example 1 Consider the linear fractional differential equation, described as
D (α) r(t) = c1r(t)+ c2w(t)+ f (t), t ∈ Ω := [0,1]
D (α) w(t) = c3r(t)+ c4w(t)+g(t), t ∈ Ω := [0,1]
r(0) = 0, w(0) = 0,

where α = 0.75, c1 =−1
5
, c2 =−4

5
, c3 =

1
8
, c4 =−1

7
,

f (t) = 6(t − 8
5
)sin(t)−2(t +

7
5
)cos(t)− 58

15
e−3t +

20
3
,

g(t) = 2(t +
12
5
)sin(t −1)+6(t − 3

5
)cos(t −1)+

6
5
(4sin(1)+3cos(1))e−3t .

The exact solution of problem is given by r(t) = 5(x− 1)(1− cos(x)) and w(t) =
= 5xsin(x). The obtained errors are presented in Figure 1.

Fig. 1. The Absolute Error of test Example (1) with N = 8

Example 2 Consider the linear fractional differential equation, described as
D ( 1

2 )r(t) =−1
3

r(t)+
2
3

w(t)+ ch(t)+
1
3
((2t +4)et − t −7), t ∈ Ω := [0,1]

D ( 1
2 )w(t) =−1

4
r(t)+

1
5

w(t)+ sh(t)+
(et −1)(t +1)

4
+

4tet

5
, t ∈ Ω := [0,1]

r(0) = 0, w(0) = 0,

The exact solution of problem is given by r(t) = (t +1)(et −1) and w(t) = tet .
The comparison of exact and numerical solution, and absolute errors are presented
in Figures 2 and 3.



54 I. Mansouri, M. Moumen Bekkouche, A. Azeb Ahmed

Fig. 2. Example (2) with N = 8

Fig. 3. The Absolute Error of test Example (2) with N = 16

6. Conclusion

In this study, we have investigated a new couple system of linear fractional differ-
ential equations involving Caputo-Fabrizio fractional derivatives with non-singular
exponential kernels. The existence and uniqueness of solution was investigated by
using the Picard-Lindelöf method and fixed point theory. Also, we used the Adomian
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decomposition method to calculate the approximate solution to the proposed system.
The method provides a series of types of solution. In most cases, the series solu-
tion converges to the exact solution to the problem. From analysis and experimental
results we can say that the proposed method provides a very high accurate estimate of
the solution, and we observe that by using a high scale level, the iteration converges
more rapidly, as shown by the Figure 3. Furthermore, the proposed method is easy to
implement for the computation of solutions to various problems of fractional order
differential equations.
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