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Abstract. This paper presents the problem of natural vibration of a two-stage hydraulic  

cylinder subjected to Euler compression load. The considered hydraulic cylinder is freely 

supported at both of its ends. The linear vibration problem of the telescopic hydraulic  

cylinder is based on the kinetic stability criterion using Hamilton’s principle and the  

Bernoulli-Euler theory. The stiffness of the guide and sealing elements between successive 

stages of the hydraulic cylinder were considered in this paper. These stiffnesses were  

modelled using translational and rotational springs. The effects of cylinder wall thickness, 

piston rod diameter, and thickness of guiding and sealing elements on the natural vibration 

of the system were analysed. Results are presented in the form of characteristic curves on 

the plane load – natural frequency with different parameters characterizing the considered 

hydraulic cylinder. 
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1. Introduction  

Hydraulic cylinders are among the systems that are used in many industries. 

Due to very high longitudinal forces, they are vulnerable to damage. Hydraulic cyl-

inders are highly responsible elements of mechanical structures, whose destruction 

may have very serious consequences, both material and resulting from the loss of 

people’s health and lives. Damage to a hydraulic cylinder can result from many 

factors. The most exposed components of the hydraulic cylinders are the guiding 

and sealing elements. Repair of these parts usually means replacement of the worn-

-out elements with new ones and the inspection of the inner surfaces of the cylinder 

and piston rod for corrosion. When repairing a hydraulic cylinder, other visible 

mechanical damage that may lead to faster wear of the sealing and guiding rings 

must also be taken into account. During the design of hydraulic cylinders, it is  

necessary to consider the stability of the system and the fatigue strength of the  
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cylinder material and the piston rod. In this paper the cylinder is regarded as  

a slender system. Lech Tomski has developed basic mathematical models of these 

structures. The first one concerns transverse free vibrations and static stability of  

a hydraulic cylinder as slender systems [1]. This model was used in the work [2]. 

The second model concerns the free and forced vibrations of a hydraulic cylinder 

(a curved system) in the longitudinal direction, which was presented, among others, 

in the paper [3]. The analysis of the stability of the hydraulic cylinder was under-

taken in publications [1, 2, 4-7]. Uzny and Kutrowski [4, 5] studied the telescopic 

hydraulic cylinder characterized by the number of stages greater than one, limiting 

themselves to fully extended systems. The paper [2] covers the research on the 

stiffness of the mountings of a single-stage telescopic hydraulic cylinder. It presents 

the results of numerical and experimental calculations. A comparison of an approxi- 

mate model of numerical calculation of stability of a DNV-GL compliant hydraulic 

cylinder and finite element method is presented in [6]. The effect of manufacturing 

inaccuracy of hydraulic cylinder components and wear of sealing elements on the 

stability of the cylinders based on numerical and experimental calculations are pre-

sented in [7]. A study based on the large deformation theory and the Timoshenko 

beam theory of a horizontal hydraulic cylinder articulated on both supports is pre-

sented in [8]. A simplified and at the same time practical design constraint for  

a double acting hydraulic cylinder is presented in publication [9]. Solazzi and  

Buffoli [10] presented results that show that the hydraulic cylinder made of compo-

site material has a very similar performance, in terms of the safety factor, to the 

hydraulic cylinder made of structural steel and that the weight reduction is about 

87%. The purpose of the research presented in [11] is to evaluate the variability of 

the buckling load in thin orthotropic cylindrical shells due to the deviation with  

respect to the nominal values, for geometrical and material properties. 

2. Formulation of boundary problem  

The considered system is shown in Figure 1. In this paper, the behaviour of  

a two-stage hydraulic cylinder in its full range of operation is considered. To con-

sider the hydraulic cylinder in its full range of operation, five schemes are consid-

ered: A, AB, B, BC, C (Fig. 1) corresponding to five possible stages of its work. 

The scheme A corresponds to the fully complex hydraulic cylinder. In the hydrau-

lic cylinder corresponding to scheme AB, the second cylinder is extended. Scheme 

B corresponds to a hydraulic cylinder with the second cylinder fully extended.  

The stage of the hydraulic cylinder during which the piston rod extends is repre-

sented by diagram BC. The fully extended hydraulic cylinder is represented by  

the last diagram – C. The hydraulic cylinder consists of three components. Two of 

them are cylinders, and one is the piston rod of the hydraulic cylinder. The tested 

object is subjected to Euler loading characterized by a constant direction of action 

when the system is tilted out of the equilibrium position. This direction is con-

sistent with the non-deformed axis of the system.  
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Fig. 1. Schematic of the hydraulic cylinder under consideration: successive stages of  

hydraulic cylinder extension: A, AB, B, BC, C; mathematical model D 

The mathematical model considers the stiffnesses, masses and mass moments of 

inertia of the sealing and guiding elements occurring between its members. In this 

paper, a hydraulic cylinder is considered that is articulated at both ends. Figure 2 

shows the successive stages of the hydraulic cylinder extension with discrete ele-

ments in the form of translational and rotational springs (K and C, respectively). 

These elements are used to model the guide and seal stiffnesses. In this paper, the 

bottom cylinder (characterized by the largest diameter) is denoted by the number 1, 

the top cylinder by the number 2, and the piston rod by the number 3. In order to 

consider the hydraulic cylinder in its full range of operation, each cylinder element 

is divided into two parts. The subdivision point of each cylinder element depends 

on the momentary position of the extended element. The members (after division) 

with indexes 11 and 12 refer to the lower cylinder; members 21 and 22 correspond 

to the upper cylinder. Members 31 and 32 correspond to the piston rod. The posi-

tion of the dividing point in the case of an element which does not extend relative 

to the adjacent element is not relevant (e.g., the dividing point may be taken at half 

the length of the element under consideration). For example: in an arrangement  

according to scheme AB (Fig. 1) in a piston rod numbered 3, the position of the  

dividing point between the elements 31 and 32 of the piston rod is irrelevant (piston 

rod 3 does not move relative to cylinder 2). In the arrangement according to 

scheme BC, in the lower cylinder designated 1, the position of the dividing point 

between elements 11 and 12 is irrelevant (cylinder 1 does not move relative to cyl-

inder 2). The discrete elements modelling the guiding and sealing systems of the 

individual cylinder members are designated as follows: 
ij
kC , ij

kK  – the torsional and 

translational stiffness of the guiding and sealing system, respectively and sealing 

system, which occurs between the i-th and j-th cylinder member. The upper index k 

takes the values 0 and 1. The value k = 0 corresponds to the lower sealing and guid-

ing system between the i-th and j-th members of the cylinder. The value k = 1 is  
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assigned to the upper sealing and guiding arrangement. When the letter R appears 

in the designation, it means that the upper and lower sealing and guiding systems 

have made contact as a result of the hydraulic cylinder operation. The stiffness  

containing the designation R is therefore the reduced stiffness: 0 1
ij ij ij
RC C C  ; 

0 1
ij ij ij
RK K K  . In the same way, the mass Mu of the sealing-guiding systems  

occurring between the individual cylinder members was determined. The masses  

of the individual sealing-guiding elements were calculated in the following way: 

     2 2
12 12
0 11 21 0

4
w zMu d d Lu


   

 
 (1) 

     2 2
23 23
0 21 0

4
w TMu d d Lu


   

 
 (2) 

 12 12
1 0Mu Mu ; 23 23

1 0Mu Mu   (3) 

where: 
12
0Mu , 

12
1Mu  – masses of the sealing-guiding element between cylinder 1  

and 2, 
23
0Mu , 23

1Mu  – masses of the sealing-guiding element between cylinder 2 

and piston-rod 3, 
12
0Lu , 

23
0Lu   length of the sealing-guiding elements (

11
0Lu  = 

= 
32
1Lu  = 0.05 LT), dw21 – internal diameter of cylinder 2, dw11 – internal diameter of 

cylinder 1, dz21 – external diameter of cylinder 2,  – density of material of the  

sealing-guiding elements. 

The additional letter designation S, in Figure 2, indicates the hydraulic cylinder 

components transmitting the longitudinal force at a given stage of hydraulic cylin-

der operation. The dimensions of subsequent components of the cylinder depend  

on piston rod diameter dt, cylinder thickness, thickness gR and seal thickness gU . 

The successive diameters (outer and inner) of individual cylinders can be calculated 

from the relation: 

     2 1 2 1ij U Rdw dt n g n i g       (4) 

    2 2ij U Rdz dt n i g n i g      (5) 

where: dw12 = dw11 , dw22 = dw21 , dw31 = dw32 , dz12 = dz11 , dz22 = dz21 , dz31 = dz32 , 

gU and gR are the thicknesses of sealing-guiding systems and cylinders respectively, 

n – the number of hydraulic cylinder members (n = 3), and i – stands for the  

cylinder (i = 1, 2). 

Each cylinder member is characterized by its bending stiffness (EI)ij and mass 

per unit length (ρA)ij , respectively. In addition, the mass of the working medium 

contained in the respective chambers of the cylinders (ρA)cij is taken into account.  
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The boundary problem with respect to the natural vibration of the hydraulic 

cylinder is formulated on the basis of Hamilton's principle. 
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Although the paper considers the full range of operation of the two-stage 

hydraulic cylinder, the presentation of the boundary problem is limited to the stage 

of extending the cylinder marked AB. This stage corresponds to the ejection of the 

first stage of the hydraulic cylinder. The formulation corresponding to the 

remaining stages of the cylinder is carried out analogically. These formulations are 

omitted since their complete presentation would significantly increase the volume 

of this paper. The potential energy V of the considered system in the case of 

configuration AB can be written in the following form: 
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The kinetic energy T of the considered system in the case of configuration AB  

can be written in the following form: 
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where: 
11
0Ju , 

32
1Ju  – mass inertia moment of lower and upper support of hydraulic 

cylinder ( 11
0Lu  = 

32
1Lu  = 0.05 LT): 
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Fig. 2. Mathematical scheme of the considered hydraulic cylinder cases 
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The member (ρA)cij written in the kinetic energy equation occurs only in those 

parts of the cylinders that are filled with the working medium. This paper assumes 

that the considered hydraulic cylinder is located in the vertical position. In the case 

of a different orientation in the mathematical model, the initial deflection of the 

system caused by the force of gravity of these individual elements should be taken 

into account. 

After taking into account the potential and kinetic energy and performing the 

necessary mathematical transformations, the differential equations of motion of the 

system and the natural boundary conditions are obtained. The differential equations 

of motion after taking into account the solution of the form: 

      , cosij ij ij ijY x t y x t  (11) 

can be written as follows: 

  
   

     
4 2

2

4 2
0

ij ij ij ij

ij ij ijij ij cij
ij ij

d y x d y x
EJ P A A y x

dx dx
         (12) 

where: i = 1, 2, 3; j = 1, 2; ω – natural frequency, and P11 = P31 = P32 = P; P12 =  

= P21 = P22 = 0; (A)c12 = (A)c21 = (A)c22 = (A)c31 = (A)c32 = 0. 

In this paper, an example of geometric and natural boundary conditions is 

presented for the AB scheme (Fig. 2): 

    11 32 320 0y y L  ;    1 1 2 0i i iy L y ;    1 1 2 0I I
i i iy L y  (13-16) 

where i = 1, 2, 3.  

                000 1212211111
12
01111111111  IIIIIII yEIyLyKLPyLyEI  (17) 

              000 1212211111
12
0111111  IIIIII yEIyLyCLyEI  (18) 
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The solution of differential equations (10) can be represented as follows: 

          cosh sinh cos sinij ij ij ij ij ij ij ij ij ij ij ij ij ijy x A x B x C x D x        (33) 

where: 
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 (34 a-d) 

The solutions (33) are substituted into the boundary conditions (13-32) to form 

a system of equations. The determinant of the matrix of coefficients of this system 

of equations equated to zero is the governing equation by which the critical force 

and natural frequencies of the system are determined. 

3. Results of numerical calculation 

This paper presents the results of numerical calculations concerning the influ-

ence of seal and guide stiffness on the value of critical force, which can be applied 
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to the tested system in its full range of operation. Characteristic curves (curves in 

the plane load – natural frequency) for selected degrees of hydraulic cylinder sepa-

ration are also presented. The cylinder is a system, in the case of which there is  

a high probability of time-varying forces acting on it. Therefore, it is justified to 

present the results in the form of characteristic curves. The results are presented  

in the dimensionless form with use the following quantities: 
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 (35) 

where: ζGU – thickness parameter of sealing and guiding systems, ζGR – cylinder 

thickness parameter, λ – external load parameter, Ω – natural frequency parameter, 

(EI)t – bending stiffness of the piston rod, Lt – length of the piston rod, ζCij ,  

ζKij – stiffness parameter of the rotational and translational springs respectively,  

ζL – pitch parameter of the hydraulic cylinder, Lc – actual length of the hydraulic 

cylinder. 

 

 
Fig. 3. Diagram of the critical force value as a function of the current actuator length  

parameter 

Figure 3 shows the critical load parameter depending on the hydraulic cylinder 

extension ratio parameter. The calculations were carried out for five stiffnesses of 

sealing and guiding systems located between successive hydraulic cylinder mem-

bers (C = K = 20; C = K = 40; C = K = 60; C = K = 80; C = K = 100). Equal 

values of parameters determining translational and rotational stiffnesses of sealing- 

-guiding systems were assumed in the calculations.  
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Fig. 3 a-e. Characteristic curves in the plane of the load parameter  – the first natural 

frequency parameter at different parameter values ζCij , ζKij  

It was additionally assumed that considered stiffnesses between all cylinder 

members are also equal. In the case when C = K = 20 and 40, there is a slight  

increase in the critical force during the initial phase of the first stage until the  

maximum value is reached. Then, the critical force decreases. It reaches its lowest 

value when the stage is fully extended (the phase of the hydraulic cylinder opera-

tion corresponding to the diagram B – Fig. 2). If C = K = 60; 80; 100 the change of 

the critical load while extending the first stage is small. The small change of the 

critical load in this phase of the cylinder operation is caused by the fact that its  

value depends on the stability of the piston rod. The critical load increases and  

then decreases during piston rod advance (the working phase modelled by the BC 

scheme – Fig. 2). The lowest value of the critical load occurs in the case of the  

fully extended piston rod. The influence of stiffness of the sealing-guiding systems 

on the critical load of the fully extended hydraulic cylinder is small. The magnitude 
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and dynamics of the critical load increase in the first stage of piston rod advance 

depends on the stiffness of the sealing-guiding systems under consideration.  

The increase of the critical load is caused by the shortening of the buckling length 

of the piston rod, which has a significant influence on the stability of the whole 

system up to a certain stage of the hydraulic cylinder extension. Figure 4 shows the 

characteristic curves that were determined at different stages of cylinder operation 

(L = 1, 1.5, 2, 2.5, 3). Geometric parameters of the hydraulic cylinder under con-

sideration: piston rod diameter – dt = 0.02 m, thickness of sealing and guiding  

systems – GU = GR = 0.5. 

The natural frequency increases with the increase in the stiffness of the sealing 

and guiding systems in all presented stages of the hydraulic cylinder operation.  

The magnitude of this increase depends on the extension of the hydraulic cylinder. 

The smallest effect of stiffnesses C and K on the frequency is obtained when the 

hydraulic cylinder is fully extended (scheme C), and the largest when the hydraulic 

cylinder is retracted (scheme A). At higher stiffnesses K and C, at certain stages of 

the hydraulic cylinder operation, a rapid decrease in natural frequency can be  

observed at external loads close to the critical load. This rapid decrease in frequency 

occurs at the initial stage of hydraulic cylinder extension. The greater the degree of 

extension of the cylinder (higher value of the L parameter), the shorter the frag-

ment of the characteristic curves corresponding to the rapid frequency drop. 

4. Conclusions 

In this paper, the boundary problem of a telescopic hydraulic cylinder subjected 

to Euler loading is considered. The boundary problem was formulated on the basis 

of Hamilton's principle. Based on the mathematical model, numerical calculations 

were carried out. The value of critical force that can be loaded on the hydraulic cyl-

inder during its operation was determined. The results of numerical calculations 

were presented as a dimensionless critical force parameter depending on the cur-

rent length of the hydraulic cylinder. Additionally, characteristic curves on the 

plane: the parameter of external – the parameter of the first natural frequency were 

presented. Numerical calculations were carried out in the direction of the influence 

of the stiffness of the sealing-guiding systems and the degree of hydraulic cylinder 

extension on the critical load and the relation between the natural frequency and 

the external load. 

In this paper, only the strength aspect of the hydraulic cylinder was considered, 

consisting in the study of stability (determination of critical load). In a real hydrau-

lic cylinder, the strength of the cylinder, apart from buckling, depends on the strain 

of the cylinder material caused by high working pressure. Therefore, the formula-

tion of the stability problem presented here should be supplemented with the 

strength of cylinders and sealing elements in subsequent works in the considered 

field. 
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