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2 Department of Civil Engineering, Federal University of Santa Catarina (UFSC)
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Abstract. In this work, we present a posteriori error estimates for the Euler-Bernoulli beam
theory with inexact flexural stiffness representation. This is an important subject in practice
because beams with non-uniform flexural stiffness are frequently modeled using a mesh
of elements with constant stiffness. The error estimates obtained in this work are validated
by means of two numerical examples. The estimates presented here can be employed for
adaptive mesh refinement.
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1. Introduction

In this paper, we present a posteriori error estimates for Euler-Bernoulli beam
theory with inexact flexural stiffness representation. Inexact representation of the
stiffness occurs when a beam with arbitrary stiffness variation is modeled using
a mesh of simple elements with constant stiffness, for example. The error estimates
obtained here are useful for adaptive mesh refinement in these situations.

Structural Mechanics problems generally required the use of approximate numeri-
cal methods, such as the Finite Difference Method, the Finite Element Method (FEM)
and the Boundary Element Method, among others. However, the FEM is by far
the most popular computational approach for problems from Structural Mechanics,
due to is computational efficiency, flexibility and accuracy [1, 2]. In the literature
concerning the FEM, much attention has been given to error estimates concern-
ing the interpolation provided by the shape functions, also known as discretization
errors [1, 3–7]. In this case, it is assumed that the boundary conditions and the
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geometry of the domain are represented exactly and the only source of error is the
interpolation scheme.

However, in this work we are interested in another kind of error, which is the one
that arises when the flexural stiffness along the beam is not represented exactly. This
can be considered a kind of mathematical modeling error, since we are assuming
an approximate mathematical problem instead of the original one. Thus, this error
occurs even if the resulting boundary value problem is solved exactly. Besides, it
is known that standard Euler-Bernoulli beam finite elements (i.e. with cubic inter-
polation) give exact nodal displacements in static analysis if the distributed loads
are substituted by static equivalent nodal loads and the stiffness matrix is evaluated
exactly [2]. Thus, discretization errors are generally of small importance in practical
applications concerning beam static analysis. For this reason, in this work we do not
discuss FEM discretization errors further (see [1] for a brief introduction on FEM
discretization errors).

Even though a very large number of past works addressed developments concern-
ing beam elements (see [8–12], to name a few), a posteriori estimates for errors
caused by inexact representation of the flexural stiffness have not yet been proposed.
This is the main novelty of this paper.

Here we consider Euler-Bernoulli beam theory with infinitesimal rotations.
We thus assume that [13]

d2v
dx2 =

M(x)
EI(x)

, (1)

where v are transverse displacements, x is the coordinate directed along the beam
axis, M(x) is the bending moment and EI(x) is the flexural stiffness (Fig. 1). Here
we assume that the beam starts at x = 0 and ends at x = L. Thus, the domain is given
by Ω = [0,L] and the boundary is given by Γ = {0,L}. All the theoretical results
of this work are obtained for a beam with length L. If the beam under analysis is
divided into sub-domains (e.g. finite elements), then the estimates can be applied to
each sub-domain individually, by taking x as its local coordinate system and L as its
length.

Here we assume that the flexural stiffness along the beam is not represented
exactly. This may be a consequence of modeling the beam with sub-domains (e.g.
finite elements) with constant stiffness, for example. In this case we have an approx-
imate flexural stiffness EIh(x) and

d2vh

dx2 =
Mh(x)
EIh(x)

, (2)

where Mh(x) is the approximate bending moment and vh is the approximate transverse
displacement. The displacement error is then given by

e(x) = vh(x)− v(x). (3)
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Fig. 1. Euler-Bernoulli beam with variable flexural stiffness EI(x)

In the next section, we demonstrate that the displacement error depends on the
curvature error. An estimate for the curvature error is then obtained in Section 3.
Beams represented with piece-wise constant flexural stiffness approximation are dis-
cussed in Section 4. This is likely the most important situation in practice, because
beams with variable inertia are frequently modeled with a mesh of elements with con-
stant inertia. In Section 5, we present a posteriori error estimates that can be used in
numerical applications. In Section 6 two numerical examples are presented in order
to demonstrate the accuracy of the error estimates proposed. The conclusions of this
work are summarized in Section 7. Two conceptual aspects of this work are presented
in the Appendices.

2. Displacement error increment inside a beam

For infinitesimal rotations dv/dx, the curvature κ can be written as [13]

κ(x) =
d2v
dx2 . (4)

In the same way, the approximate curvature κh(x) can be written as

κh(x) =
d2vh

dx2 . (5)

Subtracting Eq. (4) from Eq. (5), we obtain the curvature error

eκ(x) = κh(x)−κ(x) =
d2vh

dx2 − d2v
dx2 . (6)

Integrating twice along the beam length, we obtain∫ L

0

[∫
eκ(x)dx

]
dx =

∫ L

0

[∫ (
d2vh

dx2 − d2v
dx2

)
dx
]

dx

= vh(L)− vh(0)− v(L)+ v(0)

= e(L)− e(0).

(7)
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We observe that the quantity

∆eΩ = e(L)− e(0) (8)

is the error increment inside the beam due to inexact representation of the stiffness.
Note that this error does not account for errors caused by inexact boundary condi-
tions or approximation schemes (e.g. finite element approximation errors). The Greek
letter Ω is employed to explicitly identify that this error is generated inside the beam
domain. We then define

∆eΩ =
∫ L

0

[∫
eκ(x)dx

]
dx . (9)

For computational purposes, it is interesting to obtain error estimates that avoid
integration procedures. Thus, from Eq. (9) we can write the bound

|∆eΩ| ≤ max
x∈[0,L]

|eκ(x)|
∫ L

0

[∫
dx
]

dx

≤ L2

2
max

x∈[0,L]
|eκ(x)|.

(10)

Note that the above results require evaluation of the curvature error eκ . This is
detailed in the next section.

3. Curvature error

In Appendix A, we demonstrate that for L → 0 we can assume

Mh(x) = M(x). (11)

It is easy to observe that this assumption is valid for statically determinate beams.
However, in Appendix A we demonstrate that this assumption is asymptotically true
for L → 0 in any case. For this reason, the results obtained here are accurate enough
for mesh refinement purposes.

Substitution of Eq. (11) into Eq. (2) gives

d2vh

dx2 =
M(x)

EIh(x)
. (12)

Equations (1) and (12) can be rewritten as

M(x) = EI(x)
d2v
dx2 = EI(x)κ(x), (13)

M(x) = EIh(x)
d2vh

dx2 = EIh(x)κh(x). (14)
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From Eqs. (13) and (14), we thus conclude that

κ(x) = κh(x)
EIh(x)
EI(x)

. (15)

Substitution of Eq. (15) into Eq. (6) finally gives

eκ(x) = κh(x)
(

1− EIh(x)
EI(x)

)
(16)

for L → 0. This result demonstrates that the curvature error essentially depends on
the relative stiffness error and the curvature.

4. Piece-wise constant flexural stiffness approximation

Let us suppose that the beam is represented using sub-domains with constant flex-
ural stiffness, interpolated at the center of each sub-domain. In this case, the approx-
imate stiffness at a given sub-domain of length L is given by

EIh = EI(L/2). (17)

This is likely the most important situation in practice, because beams of variable
stiffness are frequently modeled using finite elements with constant stiffness interpo-
lated at its center. In this case, we can obtain an interesting error estimate by assuming
eκ(x) has linear variation inside the element, i.e.

eκ(x) = eκ(0)
L−2x

L
(18)

where eκ(0) is the curvature error at x = 0. The above expression was chosen because
it satisfies eκ(L/2) = 0, i.e. no curvature error occurs at x = L/2 since the stiffness is
interpolated there. Integration of Eq. (9) for eκ(x) as given in Eq. (18) results in

∆eΩ =
eκ(0)L2

6
. (19)

5. Proposed error estimates

Based on Eq. (10), we propose the bound estimate

|∆eΩ| ≤
L2

2
max

x∈[0,L]
|eκ(x)| . (20)

The idea is to take x that represents the maximum curvature error inside the beam.
If the stiffness is interpolated at the center of the beam (i.e. at x = L/2), then it should



A posteriori error estimates for beams with inexact flexural stiffness representation 67

be sufficient to take the maximum nodal error. We emphasize that this is a theoretical
bound that holds for L → 0.

When the flexural stiffness is represented with elements with constant stiffness
interpolated at the center, from Eq. (19) we propose the estimate

|∆eΩ|=
L2

6
max

x∈{0,L}
|eκ(x)| , (21)

where x ∈ {0,L} represents the boundaries of the beam (i.e. we take the maximum
nodal error). As demonstrated in the examples, this error estimate is accurate enough
for most practical purposes, since the assumption on linearity of eκ(x) becomes
accurate for L → 0, as long as eκ(x) is continuous inside the beam. This occurs
because continuous functions on [0,L] can be arbitrarily well approximated by
a linear function for a small enough L. If the curvature error is not continuous (e.g. the
flexural stiffness is not continuous) then this estimate may give poor results in sub-
domains where the condition is violated.

Note that the error estimate from Eq. (21) is very simple to implement in prac-
tice. If the flexural stiffness is interpolated at the center of a given element, then the
maximum curvature error occurs at its nodes. In this case, we evaluate Eq. (16) at
the nodes of the element, take the maximum absolute value and multiply it by L2/2,
where L is the length of the element considered. This gives the error generated at the
element considered. In order to access the error of the entire mesh, we simply repeat
this procedure for each element.

Also note that the bound from Eq. (20) gives approximately three times the error
estimate from Eq. (21). This may seem a poor result at first sight, but we must
remember that the bound does not depend on any assumptions regarding continuity of
eκ(x). Besides, the bound also holds for a wider range of applications, such as other
interpolation schemes employed to represent the stiffness (e.g. linear, quadratic).

6. Numerical examples

In this section we present two examples that demonstrate the error estimates
developed in this work. The results were obtained using finite elements with con-
stant flexural stiffness [1, 2] interpolated at the center of each element, (i.e. using
Eq. (17)). Distributed loads are substituted by static equivalent loads at the nodes.
In the examples, L refers to the length of each element. The error estimates evalu-
ated with Eqs. (20) and (21) are compared to errors calculated from analytical solu-
tions using Eq. (47) (see Appendix B). The analytical solutions were obtained with
Maple [14].
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6.1. Example 1

We first consider the problem

d2

dx2

(
EI(x)

d2v
dx2

)
= q(x) (22)

with x ∈ [0,1] and 
EI(x) = (exp(x))2 ,

q(x) = 1,
v(0) = v(1) = 0,

v′′(0) = v′(1) = 0.

(23)

In this case we have a beam with unitary length subject to unitary distributed load.
The beam has a simple support at the left side and a fixed support at the right side.
This problem has analytical solution

v(x) =
1

80exp(−2)−16
[(

10x2 + x−4
)

exp(−2−2x)

−
(
2x2 + x

)
exp(−2x)+(4− x)exp(−2)−7xexp(−4)

]
.

(24)

The problem was solved using finite elements of size L = 0.1 and L = 0.025. The
approximate nodal displacements are compared to the analytical ones in Figure 2.
The error estimates evaluated with Eqs. (20) and (21) are compared to the error
calculated with respect to the analytical solution in Figure 3.
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Fig. 2. Displacements for Example 1

For L = 0.1, from Figure 2 we observe that the largest displacement errors occur
close to x = 0.4. However, from Figure 3 we observe that the element that generates
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Fig. 3. Errors for Example 1 evaluated with Eq. (20) (Bound) and Eq. (21) (Estimate)

largest error is the one centered at x = 0.25. This occurs because the error generated
along the beam accumulates along its length. Thus, the largest displacement errors do
not necessarily appear at regions where largest errors were generated. For this reason,
an efficient mesh refinement strategy must act on the elements where the largest errors
are generated, not necessarily where the largest errors appear. In another words, mesh
refinement should be based on the error estimates from Figure 3 and not on the visual
inspection of the displacements from Figure 2.

Also note that the error estimate from Eq. (21) becomes more accurate as L is
reduced from 0.1 to 0.025, as expected. The bound from Eq. (20), on the other hand,
gives conservative estimates for the errors.

6.2. Example 2

We now consider the problem from Eq. (22) with x ∈ [0,2] and
EI(x) = 2+ x(x−2),

q(x) = δ (x−1),
v(0) = v(2) = 0,

v′′(0) = v′′(2) = 0.

(25)

where δ (x− 1) represents Dirac’s Delta at x = 1. In this case, the beam has length
equal to 2 and is fixed at both sides. The load q(x) = δ (x− 1) represents a con-
centrated load of unitary magnitude located at x = 1. This problem has analytical
solution

v(x) =
1

8π

[
(−4ln(2)+(2ξ −2)π)ln(ξ 2 −2ξ +2)

+((8ξ −8)ln(2)+4π)arctan(ξ −1)−4ξ π +π
2 +4ln(2)2] , (26)
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Fig. 4. Displacements for Example 2
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Fig. 5. Errors for Example 2 evaluated with Eq. (20) (Bound) and Eq. (21) (Estimate)

with

ξ =

{
x, x ≤ 1

2− x, x > 1
. (27)

We solve the problem using finite elements with constant flexural stiffness of size
L = 0.25 and L = 0.0625. The approximate nodal displacements and the errors are
presented in Figures 4 and 5, respectively. We again observe that the estimate from
Eq. (21) becomes more accurate as L is reduced. Even though this estimate some-
times underestimates the true error generated inside the element, it should be accurate
enough for mesh refinement purposes. The bound from Eq. (20), on the other hand,
is not as accurate as the estimate from Eq. (21), but gives a conservative estimate.
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7. Conclusion

In this work, we presented a posteriori error estimates for Euler-Bernoulli beams
with inexact stiffness representation. This is an important subject because beams
with variable flexural stiffness are frequently modeled using a mesh of elements with
piece-wise constant stiffness. The estimates presented here can be employed for mesh
refinement purposes in the future.

A general bound estimate and a specific estimate for piece-wise constant stiff-
ness interpolation were presented. Estimates for other stiffness interpolation schemes
can be obtained from Eq. (9). The results from the numerical examples demon-
strate that the estimates become more accurate when the length of the elements is
reduced. The results also indicate that the estimates should be accurate enough for
mesh refinement purposes.
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Appendix A: the assumption Mh(x) = M(x) for L →→→ 0

In this section we demonstrate that we can assume Mh(x) = M(x) when L → 0.
Consider the bending moment and stiffness errors, given by

eM(x) = Mh(x)−M(x), (28)

eEI(x) = EIh(x)−EI(x). (29)

The weak form of the Euler-Bernoulli problem from Eq. (22) is given by∫ L

0

d2

dx2

(
EI(x)

d2v
dx2

)
w(x)dx = [V (x)w(x)]L0 −

[
M(x)

dw
dx

]L

0
+

∫ L

0
EI(x)

d2v
dx2

d2w
dx2 dx.

(30)
This gives the variational problem

L (EI(x))=
∫ L

0
EI(x)

d2v
dx2

d2w
dx2 dx−

∫ L

0
q(x)w(x)dx−

[
M(x)

dw
dx

]L

0
+[V (x)w(x)]L0 = 0

(31)
where L is the functional and the last two terms are boundary conditions concerning
applied moments and shear.

By applying a perturbation hδ (x) to the stiffness we get the perturbed displace-
ment field v(x)+hu(x). This gives the variational problem

L (EI(x)+hδ (x)) =
∫ L

0
(EI(x)+hδ (x))

d2(v+hu)
dx2

d2w
dx2 dx−

∫ L

0
q(x)w(x)dx

−
[

M(x)
dw
dx

]L

0
+[V (x)w(x)]L0 = 0.

(32)

The sensitivity of the variational form can then be written as

DL (EI(x)) = lim
h→0

L (EI(x)+hδ (x))−L (EI(x))
h

= 0 (33)

and results ∫ L

0

(
EI(x)

d2u
dx2 +δ (x)

d2v
dx2

)
d2w
dx2 dx = 0. (34)
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Since the above condition must be satisfied for arbitrary w(x) we have

d2u
dx2 =− δ (x)

EI(x)
d2v
dx2 =−δ (x)

M(x)
EI2(x)

. (35)

The bending moment obtained with stiffness EI(x) can be written as

M(EI(x)) = EI(x)
d2v
dx2 , (36)

while the bending moment obtained with perturbed stiffness EI(x)+ hδ (x) can be
written as

M(EI(x)+hδ (x)) = (EI(x)+hδ (x))
d2(v+hu)

dx2 . (37)

Thus, the bending moment change caused by the perturbation results

∆M = M((EI(x)+hδ (x))−M(EI(x))

= hEI(x)
d2u
dx2 +hδ (x)

d2v
dx2 +h2

δ (x)
d2u
dx2 =−(hδ (x))2 M(x)

EI2(x)
.

(38)

Assuming that the perturbation to the stiffness is actually stiffness error, i.e.
hδ (x) = eEI(x), we have

eM(x) =−(eEI(x))2 M(x)
EI2(x)

. (39)

This proves that we get second order convergence rate for the bending moment when
eEI(x)→ 0. This means that the approximate bending moment converges much faster
than the approximate stiffness and thus we can assume Mh(x) = M(x) for L → 0.

Appendix B: evaluation of ∆∆∆eΩΩΩ from reference solution

Assuming that EIh(x) = EI(x) (i.e. we have no stiffness error along the beam)
we get, from Eq. (16),

eκ(x) =
d2e
dx2 = 0. (40)

In this case e(x) has the form

e(x) = A+Bx. (41)

Assume now that we have boundary errors at x = 0, given by e(0) = vh(0)− v(0)
and eθ (0) = de(0)/dx. Substitution of these boundary conditions into Eq. (41) gives

e(x) = e(0)+ eθ (0)x. (42)



74 A.J. Torii, P.M.A. Gracite, L.F.F. Miguel, R.H. Lopez

The error at x = L caused by boundary errors at x = 0 then result

e(L) = e(0)+ eθ (0)L. (43)

Following the same procedure we can evaluate the error at x = 0 caused by boundary
errors at x = L, that result

e(0) = e(L)− eθ (L)L. (44)

Subtraction of Eq. (44) from Eq. (43) gives

e(L)− e(0) =
L
2
(eθ (0)+ eθ (L)) , (45)

that demonstrates that errors at the boundaries can cause an error increment even if
the stiffness representation is exact. In order to distinguish the above error from ∆eΩ,
we define

∆eΓ =
L
2
(eθ (0)+ eθ (L)) , (46)

where Γ indicates that this error is caused by errors at the boundaries.
The error ∆eΓ is not generated inside the element under analysis, but comes from

boundary errors caused by neighbor elements. Thus, when we evaluate the error
increment ∆eΩ inside a given element by comparing vh(x) to a reference solution
v(x) we must subtract the quantity ∆eΓ. This gives

∆eΩ = e(L)− e(0)−∆eΓ . (47)


