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Abstract. Reaction-diffusion equations are vitally important due to their role in developing
sturdy models in various scientific fields. In the present work, we address an algorithm of the
Daftardar-Gejji and Jafari method for solving the nonlinear functional equations of the form
ψ = f +L(ψ)+N(ψ). Further, we employ this algorithm to solve Caputo derivative-based
time-fractional Cauchy reaction-diffusion equations. We obtain solutions in a series form that
converges to a closed form. Furthermore, we perform numerical simulations for the various
values of the order of fractional derivatives. The computational procedure of the proposed
algorithm is not burdensome. However, it is time-efficient and can easily be implemented
using a computer algebra system.
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1. Introduction

Fractional partial differential equations (FPDEs) are an excellent tool to describe
several natural phenomena. In recent decades, several models in various disciplines
such as the simulation of an outbreak of dengue fever [1], newsvendor model [2],
tumor growth model [3], economic growth model [4], stock model [5], modeling of
viscoelastic materials [6], model for bike share systems [7], modeling of a lithium-ion
battery [8], epidemic model of computer virus [9], quantum mechanical models [10],
and so on have been proposed in terms of FPDEs. For a deeper understanding of the
abstruse behavior and to draw conclusions from these equations for the underlying
process/phenomena, we need their solutions, which is the most difficult part of the
FPDEs. These equations involve fractional derivatives which are non-local in nature
and depend on history. Various conventional and non-conventional methods such as
finite difference methods [11], wavelet methods [12], meshless method [13], expan-
sion techniques [14], homotopy asymptotic method [15], Adomian decomposition
method (ADM) [16], Lie symmetric analysis [17], Daftardar Gejji and Jafari method
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(DGJM) [18], variational iteration method [19], Kudryashov’s method [20] and so on
have been proposed in the past. Time-fractional Cauchy reaction-diffusion equations
(CRDEs) are a type of partial differential equation that involve fractional derivatives
in the time variable and describe the evolution of a system over time with reaction
and diffusion processes. These equations are widely studied in various scientific fields
due to their ability to model complex phenomena with memory effects and anoma-
lous diffusion behavior. Various applications of CRDEs have been found in different
fields. In biology and medicine, these equations are used to model the spreading of
diseases, tumor growth, etc. CRDEs are employed to understand chemical reactions
that exhibit complex kinetics and diffusion processes. In population dynamics, these
equations are utilized to model the behavior of ecological and biological popula-
tions. In material science, CRDEs are expended for modeling transport phenomena
in porous media whereas in finance and economics, these are used for modeling the
financial markets with memory effects and long-range dependence [21]. Moreover, in
the literature, CRDEs have been solved by various methods such as Laplace Adomian
decomposition method [22], optimal homotopy asymptotic method [23], generalized
differential transform and residual power series methods [24], homotopy perturbation
method (HPM) [25], Sehu transform [26], Sumudu transform iterative method [27],
fractional iteration algorithm [28], semi-analytical methods [29], homotopy analysis
transform method [30], and so on.

During the literature review on time-fractional Cauchy reaction-diffusion equa-
tions, we found that DGJM is not being used for solving these equations. However,
DGJM is free from discretization and does not involve any tedious computations.
Thus in the present study, we implement DGJM’s algorithm developed by Kumar
et al. [31] to find the approximate solutions of the following form of time-fractional
Cauchy reaction-diffusion equations:

∂
µ

t ψ(x, t) = δ∂
2
x ψ(x, t)+ k(x, t)ψ(x, t), 0 ≤ µ ≤ 1,

ψ(x,0) = ψ0(x),(x, t) ∈ Ω ⊂ R2,

where the fractional derivative µ is considered in the Caputo sense, δ > 0 the diffu-
sion coefficient, ψ the concentration and k the reaction parameter. We give various
illustrative examples and represent the solutions graphically. The proposed algorithm
is time-efficient and does not include tedious computations as required in ADM and
HPM. The presentation of this work is as follows: In Section 2, we introduce some ba-
sic definitions and notations. In Section 3, we present DGJM’s algorithm for solving
nonlinear functional equations. In Section 4, we solve various well-known CRDEs
and hence demonstrate the applicability of the proposed algorithm. Finally, we sum-
marize the results in Section 5.
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2. Preliminaries

In this section, we present three useful definitions and one property.

Definition 2.1 [32] Time-fractional Riemann-Liouville integral of order µ > 0,
of a real-valued function ψ(x, t) is defined as

Iµ

t ψ(x, t) =
1

Γ(µ)

∫ t

0
(t − s)µ−1

ψ(x,s)ds.

Definition 2.2 [32] Time-fractional Caputo derivative operator of order µ > 0,
of a real-valued function ψ(x, t) is defined as

∂
µ

t ψ(x, t) = In−µ

t

[
∂

n
t ψ(x, t)

]
,

=


1

Γ(n−µ)

∫ t

0
(t − s)n−µ−1

∂
n
s ψ(x,s)ds, n−1 < µ < n,

∂
n
t ψ(x, t), µ = n ∈ N.

Definition 2.3 [33] Mittag-Leffler function with one parameter µ is defined as

Eµ(z) =
∞

∑
k=0

zk

Γ(µk+1)
, Re(µ)> 0,z ∈ C.

Theorem 2.1 [33] Let ψ(x, t) ∈Cn[0,T ] and n−1 < µ < n,n ∈ N then

Iµ

t

(
∂

µ

t ψ(x, t)
)
= ψ(x, t)−

n−1

∑
k=0

ψk(x,0)
k!

tk, t > 0.

3. Daftardar Gejji and Jafari Method’s Algorithm

Consider the following nonlinear functional equation:

ψ(x, t) = f +L(ψ(x, t))+N(ψ(x, t)), (1)

where f is a known function, L – a linear operator and N – a known nonlinear oper-
ator from a Banach space B → B. For solving the Eq. (1), Daftardar-Gejji and Jafari
introduced an iterative method [18], which has been widely used for solving a vari-
ety of equations in the literature successfully. Recently, Kumar et al. [31] proposed
an algorithm for DGJM, which is discussed below. In DGJM, a solution of the Eq. (1)



22 M. Kumar

is assumed as

ψ =
∞

∑
i=0

ψi, (2)

where the iterative terms ψ
′
i s are calculated as follows:

ψ0 = S0 = f , (3)

ψ1 = L(ψ0)+N(S0), (4)

ψ2 = L(ψ1)+N(S1)−N(S0), (5)

ψ3 = L(ψ2)+N(S2)−N(S1), (6)
...

ψn = L(ψn−1)+N(Sn−1)−N(Sn−2), (7)

where Sn = ψ0 +ψ1 + · · ·ψn, n = 0,1,2 · · · . On adding the equations (3)-(7), we get

ψ0 +ψ1 + · · ·+ψn = f +L(ψ0 +ψ1 + · · ·+ · · ·ψn−1)+N(Sn−1),

which is equivalent to

Sn = f +L(Sn−1)+N(Sn−1). (8)

(Note that as n → ∞, Sn → ψ i.e. lim
n→∞

Sn = ψ and hence eqn (8) converges to (1)).

Thus we get the following recursive formula for calculating S′ns:

S0 = f ,

Sn = S0 +L(Sn−1)+N(Sn−1), n = 1,2, · · · ,

}
(9)

The formula defined in (9) is an algorithm for DGJM. Note that we denote the (n+1)
term solution of (1) by Sn.

Remarks: Let N be a non-linear operator from a Banach space B → B such that
∥N(ψ)∥ ≤ k∥ψ∥,0 < k < 1. Then ∥S j+1 −S j∥= ∥N(S j)−N(S j−1)∥= ∥ψ j+1∥
= ∥L(ψ j)+N(S j)−N(S j−1)∥ ≤ ∥L(ψ j)∥+ k∥S j − S j−1∥ ≤ ∥L(ψ j)+ kL(ψ j−1)∥+

k2∥S j−1 − S j−2∥.... ≤ ∥L
( j−i

∑
m=0

km
ψ j−m

)
∥+ k j∥S1 − S0∥. In view of the Weierstrass

test, Sn converges to the solution of (1).

4. Illustrative examples

In this section, we solve six examples of linear and nonlinear time-fractional
Cauchy reaction-diffusion equations using the DGJM’s algorithm defined in (9). Note
that we use Mathematica 10.0 for doing calculations and graphical simulations.
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Example 4.1 Consider the following time-fractional Cauchy reaction-diffusion
equation

∂
µ

t ψ(x, t) = ∂
2
x ψ(x, t)−ψ(x, t), 0 < µ ≤ 1, (10)

ψ(x,0) = e−x + x. (11)

Integrating the Eq. (10), we get

ψ(x, t) = ψ(x,0)+ Iµ

t [∂
2
x ψ(x, t)−ψ(x, t)] = ψ(x,0)+L[ψ], (12)

where L(ψ) = Iµ

t [∂
2
x ψ(x, t)−ψ(x, t)]. Using the algorithm (9), we get

S0 = ψ(x,0) = e−x + x,

S1 = S0 +L(S0) = S0 + Iµ

t [∂
2
x S0(x, t)−S0(x, t)] = e−x + x− xtµ

Γ(µ +1)
,

S2 = S0 +L(S1) = S0 + Iµ

t [∂
2
x S1(x, t)−S1(x, t)]

= e−x + x− xtµ

Γ(µ +1)
+

xt2µ

Γ(2µ +1)
,

...

Sn = e−x + x− xtµ

Γ(µ +1)
+

xt2µ

Γ(2µ +1)
+ · · ·+(−1)n xtnµ

Γ(nµ +1)
.

Hence as n → ∞, Sn converges to the following closed-form solution

ψ(x, t) = lim
n→∞

Sn = e−x + xEµ(−tµ). (13)

For µ = 1, the solution (13) turns to the exact solution of the classical Cauchy
reaction-diffusion equation [23]. Moreover, we obtain the same result as obtained
by the Laplace Adomian decomposition method in [22] and the Sumudu transform
iterative method in [27]. The five-term approximate solutions of (10)-(11) are pre-
sented graphically in Figures 1 and 2. Moreover, the absolute errors for x = 1 and
µ = 0.7,0.8,0.9,1.0 are computed in Table 1. We observe that as the value of the
fractional derivative is increased, the absolute error is reduced.

Example 4.2 Consider the following time-fractional Cauchy reaction-diffusion
equation:

∂
µ

t ψ(x, t) = ∂
2
x ψ(x, t)− (1+4x2)ψ(x, t), 0 < µ ≤ 1, (14)

ψ(x,0) = ex2
. (15)

On integrating the Eq. (14), we get

ψ(x, t) = ψ(x,0)+ Iµ

t [∂
2
x ψ(x, t)− (1+4x2)ψ(x, t)] = ψ(x,0)+L[ψ],
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(a) (b)

(c) (d)

Fig. 1. For: a) µ = 0.025, b) µ = 0.25, c) µ = 0.75, d) µ = 1, the approximate solutions of
(10) and (11)

.

(a) (b)

Fig. 2. At: a) x = 1, b) t = 1, the five-term approximate solutions of (10) and (11)

.
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Table 1. For x = 1, the absolute errors in the five-term approximate solutions of (10) and (11)

t Error (µ = 0.7) Error ( µ = 0.8) Error (µ = 0.9) Error (µ = 1.0)
0.01 8.47652×10−9 4.13751×10−10 1.90392×10−11 8.32001×10−13

0.02 9.50658×10−8 6.58582×10−9 4.2953×10−10 2.65779×10−11

0.03 3.90052×10−7 3.31862×10−8 2.65572×10−9 2.01492×10−10

0.04 1.06051×10−6 1.04432×10−7 9.66556×10−9 8.47677×10−10

0.05 2.30162×10−6 2.53919×10−7 2.63133×10−8 2.58262×10−9

0.06 4.33182×10−6 5.24465×10−7 5.96167×10−8 6.41575×10−9

0.07 7.38958×10−6 9.67969×10−7 1.18995×10−7 1.38441×10−8

0.08 0.000011731 1.64527×10−6 2.16475×10−7 2.69467×10−8

0.09 0.0000176282 2.62603×10−6 3.66881×10−7 4.84788×10−8

0.10 0.0000253673 3.9886×10−6 5.88003×10−7 8.1964×10−8

where L(ψ) = Iµ

t [∂
2
x ψ(x, t)− (1 + 4x2)ψ(x, t)]. Using the recurrence relation (9),

we get

S0 = ψ(x,0) = ex2
,

S1 = S0 +L(S0) = ex2
+ Iµ

t [∂
2
x S0 − (1+4x2)S0] = ex2

(
1+

tµ

Γ(µ +1)

)
,

S2 = S1 +L(S1) = ex2
+ Iµ

t [∂
2
x S1 − (1+4x2)S1] = ex2

(
1+

tµ

Γ(µ +1)
+

t2µ

Γ(2µ +1)

)
,

...

Sn = ex2
(

1+
tµ

Γ(µ +1)
+

t2µ

Γ(2µ +1)
+ · · ·+ tnµ

Γ(nµ +1)

)
.

Thus, as n → ∞, Sn converges to the following closed form solution:

ψ(x, t) = lim
n→∞

Sn = ex2
Eµ(tµ).

At x = 1 and t = 1, the five-term approximate solutions of (14) and (15) for various
values of µ are plotted in Figure 3.

Example 4.3 Consider the following nonlinear time-fractional Cauchy reaction-
-diffusion equation:

∂
µ

t ψ(x, t) = ∂
2
x ψ(x, t)−∂xψ(x, t)+ψ(x, t)∂ 2

x ψ(x, t)−ψ
2(x, t)+ψ(x, t), (16)

ψ(x,0) = ex, 0 < µ ≤ 1. (17)

Integrating the Eq. (16), we get

ψ(x, t) = ψ(x,0)+ Iµ

t [∂
2
x ψ −∂xψ +ψ∂

2
x ψ −ψ

2 +ψ] = ψ(x,0)+L[ψ]+N[ψ],
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(a) (b)

Fig. 3. At a) x = 1, b) t = 1 the five-term approximate solutions of (14) and (15)

.

where L[ψ] = Iµ

t [∂
2
x ψ −∂xψ +ψ] and N[ψ] = Iµ

t [ψ∂
2
x ψ −ψ

2]. Using the algorithm
(9), we get

S0 = ψ(x,0) = ex,

S1 = S0 +L[S0]+N[S0] = ex + Iµ

t [∂
2
x S0 −∂xS0 +S0]+ Iµ

t [S0∂
2
x S0 −S2

0]

= ex
(

1+
tµ

Γ(µ +1)

)
,

S2 = S0 +L[S1]+N[S1] = ex + Iµ

t [∂
2
x S1 −∂xS1 +S1]+ Iµ

t [S1∂
2
x S1 −S2

1]

= ex
(

1+
tµ

Γ(µ +1)
+

t2µ

Γ(2µ +1)

)
,

...

Sn = ex
(

1+
tµ

Γ(µ +1)
+

t2µ

Γ(2µ +1)
+ · · ·+ tnµ

Γ(nµ +1)

)
.

Therefore, as n → ∞, we get the following closed form solution of (16) and (17)

ψ(x, t) = lim
n→∞

Sn = exEµ(tµ).

Example 4.4 Consider the following time-fractional CRDE

∂
µ

t ψ(x, t) = ∂
2
x ψ(x, t)− (2+4x2 −2t)ψ(x, t), t > 0, 0 < µ ≤ 1, (18)

ψ(x,0) = ex2
. (19)

Integrating on both sides of Eq. (18), we get

ψ(x, t) = ψ(x,0)+ Iµ

t [∂
2
x ψ(x, t)− (2+4x2 −2t)ψ(x, t)] = ψ(x,0)+L[ψ].
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In view of the recurrence relation (9), we get

S0 = ψ(x,0) = ex2
,

S1 = S0 +L[S0] = Iµ

t [∂
2
x S0 − (2+4x2 −2t)S0] =

2ex2
tµ+1

Γ(µ +1)
+ ex2

,

S2 = S1 +L[S1] =
2ex2

tµ+1

Γ(µ +2)
+

4ex2
Γ(µ +3)t2µ+2

Γ(µ +2)Γ(2µ +3)
+ ex2

,

S3 =
2ex2

tµ+1

Γ(µ +2)
+

4ex2
Γ(µ +3)t2µ+2

Γ(µ +2)Γ(2µ +3)
+

8ex2
Γ(µ +3)Γ(2µ +4)t3µ+3

Γ(µ +2)Γ(2µ +3)Γ(3µ +4)
+ ex2

,

S4 =
2ex2

tµ+1

Γ(µ +2)
+

4ex2
Γ(µ +3)t2µ+2

Γ(µ +2)Γ(2µ +3)
+

8ex2
Γ(µ +3)Γ(2µ +4)t3µ+3

Γ(µ +2)Γ(2µ +3)Γ(3µ +4)

+
16ex2

Γ(µ +3)Γ(2µ +4)Γ(3µ +5)t4µ+4

Γ(µ +2)Γ(2µ +3)Γ(3µ +4)Γ(4µ +5)
+ ex2

It is clear that for µ = 1, the series solution S4 of (18) and (19) turns to

S4 = ex2
+ t2ex2

+
1
2

t4ex2
++

1
6

t6ex2
+

1
24

t8ex2
,

which converges to ψ(x, t) = ex2+t2
. Five-term approximate solutions of (18) and (19)

are depicted in Figures 4 and 5. It is observed that the behavior of the solutions
depends on the value of the fractional derivative operator µ . Further, for µ = 1,
the exact, approximate solutions and absolute errors are given in Table 2.

Example 4.5 Consider the following time-fractional Cauchy reaction-diffusion
equation

∂
µ

t ψ(x, t) = ∂
2
x ψ(x, t)+(cosx− sin2 x−1)ψ(x, t), 0 < µ ≤ 1, (20)

ψ(x,0) =
1
10

ecosx−11. (21)

Integral equation corresponding to (20) and (21) is

ψ(x, t) = ψ(x,0)+ Iµ

t [∂
2
x ψ(x, t)+(cosx− sin2 x−1)ψ(x, t)] = ψ(x,0)+L[ψ].

In view of the algorithm (9), we get

S0 = ψ(x,0) =
1
10

ecosx−11,

S1 = S0 +L[S0] = Iµ

t [∂
2
x S0 +(cosx− sin2 x−1)S0] =

1
10

ecos(x)−11 − tµecos(x)−11

10Γ(µ +1)
,

S2 = S0 +L[S1] = Iµ

t [∂
2
x S1 +(cosx− sin2 x−1)S1]
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(a) (b)

(c) (d)

Fig. 4. For: a) µ = 0.025, b) µ = 0.25, c) µ = 0.75, d) µ = 1, the five-term approximate solutions of
(18) and (19)

.

(a) (b) t = 1.

Fig. 5. At: a) x = 1, b) t = 1, the five-term DGJM approximate solutions of (18) and (19)

.



An iterative approach for solving fractional order Cauchy reaction-diffusion equations 29

Table 2. For µ = 1, the absolute errors in the five-term solutions of (18) and (19)

x t ψexact ψapprox | ψexact -ψapprox |
0.1 0.2 1.051271096376024 1.051271095508336 8.67689×10−10

0.3 0.4 1.284025416687741 1.284024434492921 9.82195×10−7

0.5 0.6 1.840431398781637 1.840362607684473 0.0000687911
0.7 0.8 3.095656500124712 3.094024663852053 0.00163184
0.9 1.0 6.11044743223061 6.088084130582111 0.0223633

=
1
10

ecos(x)−11 − tµecos(x)−11

10Γ(µ +1)
+

t2µecos(x)−11

10Γ(2µ +1)
,

...

Sn =
1
10

ecos(x)−11 − tµecos(x)−11

10Γ(µ +1)
+ · · ·+ tnµecos(x)−11

10Γ(nµ +1)
.

As n → ∞, the series solution Sn converges to following closed form solution:

ψ(x, t) = lim
n→∞

Sn =
1
10

ecos(x)−11Eµ(−tµ).

Note that the same solution is obtained by the homotopy analysis transform method
in [30].

Example 4.6 Consider the following time-fractional Cauchy reaction-diffusion
equation

∂
µ

t ψ(x, t) = ∂
2
x ψ(x, t)+2tψ(x, t), 0 < µ ≤ 1, (22)

ψ(x,0) = ex. (23)

Integrating the Eq. (22), we get

ψ(x, t) = ψ(x,0)+ Iµ

t [∂
2
x ψ(x, t)+2tψ(x, t)] = ψ(x,0)+L[ψ].

Using the algorithm defined in (9), we get

S0 = ψ(x,0) = ex

S1 = S0 +L[S0] = ex + Iµ

t [∂
2
x S0 +2tS0] = ex +

2extµ+1

Γ(µ +2)
+

extµ

Γ(µ +1)
,

S2 = S0 +L[S1] = Iµ

t [∂
2
x S1 +2tS1] = ex +

ext2µ

Γ(2µ +1)
+

2extµ+1

Γ(µ +2)
+

2ext2µ+1

Γ(2µ +2)

+
2exΓ(µ +2)t2µ+1

Γ(µ +1)Γ(2µ +2)
+

4exΓ(µ +3)t2µ+2

Γ(µ +2)Γ(2µ +3)
+

extµ

Γ(µ +1)
,

S3 = S0 +L[S2] = ex + Iµ

t [∂
2
x S2 +2tS2] = ex +

ext2µ

Γ(2µ +1)
+

ext3µ

Γ(3µ +1)
+

2extµ+1

Γ(µ +2)
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(a) (b)

Fig. 6. For µ = 1: a) four-term approximate solution, b) exact solution of (22) and (23)

.

+
2ext2µ+1

Γ(2µ +2)
+

2exΓ(µ +2)t2µ+1

Γ(µ +1)Γ(2µ +2)
+

4exΓ(µ +3)t2µ+2

Γ(µ +2)Γ(2µ +3)
+

2ext3µ+1

Γ(3µ +2)

+
2exΓ(µ +2)t3µ+1

Γ(µ +1)Γ(3µ +2)
+

2exΓ(2µ +2)t3µ+1

Γ(2µ +1)Γ(3µ +2)
+

4exΓ(µ +3)t3µ+2

Γ(µ +2)Γ(3µ +3)

+
4exΓ(2µ +3)t3µ+2

Γ(2µ +2)Γ(3µ +3)
+

4exΓ(µ +2)Γ(2µ +3)t3µ+2

Γ(µ +1)Γ(2µ +2)Γ(3µ +3)
+

extµ

Γ(µ +1)

+
8exΓ(µ +3)Γ(2µ +4)t3µ+3

Γ(µ +2)Γ(2µ +3)Γ(3µ +4)
. (24)

Note that for µ = 1, the DGJM solution converges to the exact solution ψ(x, t) =
= ex+t+t2

of (22) and (23). The four-term approximate solution of (22) and (23) is
S3 which is given in Eq. (24). For µ = 1, the four-term approximate solution and the
exact solution of (22) and (23) are represented graphically in Figure 6. We observe
that the approximate and the exact solutions are in good agreement. Moreover, our
solution is the same as that obtained by Sehu transform in [34].

5. Conclusion

We presented an algorithm for DGJM to solve the functional equations of the form
ψ = f + L(ψ) +N(ψ). We solved various examples of linear and nonlinear time-
-fractional Cauchy reaction-diffusion equations using the proposed algorithm.
Further, the obtained approximate solutions are represented graphically. We observed
that the behavior of the obtained solutions changes as the value of the fractional
derivative operator change and hence depends on µ . Moreover, for some examples,
we calculated the absolute errors in their solutions obtained by the proposed algo-
rithm. We obtain the solutions in a series form that converges to a closed-form
solution. Note that we used Mathematica 10.0 for calculations and graphical simula-
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tions. The present method is robust, time-efficient, free from tedious calculations, and
can easily be implemented using a computer or symbolic algebra system. Hence the
proposed method is appropriate for solving time-fractional Cauchy reaction-diffusion
equations.
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