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Abstract. The paper analyzes critical loads of pillar arrays with fraction of elements removed
prior to actual critical loading. Two different methods of elimination are considered. In the
first case, a fraction p of weakest pillars is physically removed from the array. The second
method relies on conducting a subcritical preloading. When the sudden loading is applied to
the system, the destruction follows in a cascade-like manner. Subsequent cascades take place
due to the redistribution of load. We explore different types of load redistribution. It turns
out that the type of load transfer as well as the distribution of pillar-strength-thresholds
are of crucial importance regarding the strength enhancement of critically loaded pillar arrays.
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1. Introduction

Arrays of pillars are examples of electro-mechanical multicomponent systems.
Especially over the last years, arrays of micro/nanopillars have attracted increasing
attention within research community [1]. Due to the small feature size and periodicity
of the structure, micro/nanopillar arrays have unique properties allowing applications
in nanotechnology. They are encountered, e.g., in sensors, optical devices or energy
generation devices [2].

Multiple uniaxial tensile and compressive experiments prove that sub-micron-
scale metallic pillars have enhanced strength compared to their bulk counterparts
[3, 4]. However, micro- and nanomaterials usually display sample-to-sample fluc-
tuations [5]. Therefore, a system of individual pillars gathered together into an array
also exhibits sample-to-sample fluctuations when subjected to an external load.
The load carrying capacity of such system is a random variable known only through
its probability distribution.

In our study, a multicomponent system consists of a multitude of pillars. Although
the pillars are functionally identical, they differ in their strength thresholds. To model
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the loading process of the array, the Fibre Bundle Model approach is applied [6, 7].
When the array of vertically aligned pillars is axially loaded, pillars whose strength-
thresholds are smaller than loads locally imposed on them fail. Then, the loads from
the destroyed pillars are redistributed to the ones that remain intact. The ultimate
strength of the system is dependent not only on the distribution of pillar-strength-
-thresholds [8, 9], but also on the type of load transfer [10, 11], loading conditions
[12,13] and method of loading. Generally, the loading process can be divided into two
methods: sudden loading and quasi-static loading. The other possibility is conducting
a cyclic loading. It turns out that after carefully tuned low-amplitude cyclic loading,
a single sub-micron pillar obtains a significantly higher strength [14, 15]. Numerical
simulations show that application of optimally tailored cyclic preloading on pillar
arrays induces noticeable strengthening of the system, even though some of the pillars
may be destroyed during precompression [16]. Inspired by this, we are interested in
the effect of elimination of some pillars from the system done prior to actual critical
loading. However, we assume that pillar-strength-thresholds remain quenched during
the whole process. The elimination of some fraction of pillars is accomplished by one
of the two methods described in the next section.

In the following, in Section 2, we provide description of our model, including two
ways of pre-elimination of the elements from the system. The results of numerical
simulations are presented in Section 3. Finally, we briefly summarize our findings.

2. Arrays of pillars under critical sudden loading

Initially, the system is composed of N = L×L pillars located at nodes of a square
substrate, where L is a linear system size. Strength-thresholds of pillars are inde-
pendent and identically distributed random variables. Therefore, the load carrying
capacity of the system is random as well. Each pillar is seen as a two-state compo-
nent, either intact or crushed. The term ’intact’ means that the pillar is fully func-
tional. When the load applied locally on the pillar attains its strength-threshold, the
pillar instantaneously and irreversibly collapses. The crushed/eliminated pillar carries
no load.

As the pillar-strength-thresholds σth are random variables, we employ two prob-
ability distribution functions: uniform distribution on the interval [0,1] and two-
-parameter Weibull distribution whose cumulative distribution function is as follows

Pρ,λ (σth) = 1− exp
[
−(σth/λ )ρ

]
(1)

where ρ is a shape parameter and λ is a scale parameter. We assume that λ = 1.
Shape parameter ρ characterizes the amount of threshold disorder.

In the sudden loading process, a total load F is suddenly applied on the entire
system. Suppose that at the beginning of the loading process the number of intact
pillars is equal to N0 (N0 ≤ N). The external loading is uniform, hence a load per
pillar takes the value of f0 = F/N0. All the pillars whose σth ≤ f0 become crushed,
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whereas the rest of the loaded pillars remain intact. The initial breaking is followed by
redistribution schemes that lead the system either to a complete failure or to a stable
state of partial destruction. Hence, the whole process runs in a self-sustained cascade-
-like manner triggered by initial breaking. The total external load is fixed during the
process. Each cascade can be seen as a time step, then the total number of cascades
corresponds to a relaxation time τ .

The loads released by the crushed pillars are redistributed to the intact components
according to a given transfer rule. There are two extreme load transfer rules, namely
global load sharing (GLS) and local load sharing (LLS). The GLS rule corresponds
to a perfectly rigid substrate – the load from a destroyed pillar is transmitted equally
to all intact elements in the system irrespective of their distance from the crushed
one. This rule represents mean-field approximation. In the case of the GLS rule,
the effective range of interaction is infinite – all the intact pillars receive the same load
increment. This is in contrast to the LLS rule, where short interactions are observed –
only the nearest intact neighbours of the crushed pillar suffer additional load. It is
assumed here that pillars are placed on a non-rigid substrate that has a nonvanishing
compliance.

The rule of load transfer that interpolates between above-mentioned extreme ones
bases on a power-law redistribution [10,11]. This rule is called a range variable (RV)
load transfer rule. In this case, the load ∆Qi carried by the crushed i-th pillar is trans-
ferred to all intact pillars in the system according to the formula

Zi

|r j − ri|γ
∆Qi (2)

where γ is an adjustable parameter (γ ≥ 0), |r j−ri| is a distance between crushed i-th
and intact j-th pillars, and Zi is a normalization factor that provides conservation of
load. The GLS rule is equivalent to the RV rule with γ = 0. By increasing the value
of the parameter γ , we are reducing the effective range of interactions. Hence, when
γ → ∞, the RV rule operates like the pure LLS system. The characteristic feature of
the RV scheme is that all the intact pillars are affected by the load coming from the
crushed one, although not in the same proportion (excluding γ = 0). We also note that
redistribution of load for γ ≫ 0 (as well as for the LLS rule) leads to inhomogeneities
in load carried by individual pillars.

In this work, we analyze the effect of the elimination of some fraction of pillars
before the actual critical loading process. This elimination is realized by one of the
two methods, namely:

• fraction p of weakest components is physically eliminated from the system,
• random fraction of the components is removed from the system by carrying out

the subcritical preloading.

Under the first method, we assume that a fraction p of weakest pillars is removed
from the system prior to critical loading. The nodes in which the removed compo-
nents were placed remain empty during critical loading. The empty nodes are treated
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as nodes of pillars crushed during the loading process i.e., they carry no load. By
varying the fraction p from 0 to 0.8, we can pass from dense arrays to sparse arrays.

Applying the second method, we investigate how the strength of array is influ-
enced by subcritical precompression. Each array is characterized by its own subcrit-
ical load, being a random variable. We are aware that both analyzed methods are
theoretical, but they allow us to capture the qualitative effect of elimination of weak
elements from the system.

3. Simulation results

Based on the model described in the previous section, we have built up Wolfram
Mathematica codes to adequately simulate the loading processes. In order to obtain
reliable results, we have carried out a substantial number of simulations. We went
from N = 40× 40 to N = 350× 350 – such a range allows us to gain insight into
possible size effects. We have exploited uniform distribution as well as Weibull dis-
tribution of pillar-strength-thresholds. For the latter, we have chosen ρ = 2,5,8 –
these values ensure passing from high to low disorder of pillar-strength-thresholds.

For each configuration, at least M = 5×103 sets of samples {σth}(i), i∈{1, . . . ,M}
are randomly created before the simulations of loading. Then, taking samples one by
one, we have conducted loading experiments.

We define the ultimate strength of the system Fmax as the maximum external load
F sustained by the system, i.e. the system is in a stable state with only a fraction of
destroyed elements. Our model is not time-dependent, hence we neglect that even
a subcritical load can provoke failure of the entire system. To facilitate comparison
of arrays of different sizes, the strength is scaled by a corresponding value of N:
fmax = Fmax/N.

Adding even a small amount of load (per pillar) δ to the subcritical load fmax
results in a collapse of the system. Thus, fc = fmax+δ is a critical load of the system –
minimum suddenly applied load under which the system is down. In our simulations,
the condition δ ≤ min(0.0001,1/N) is satisfied. It should be noted that the total
critical load equals to Fc = fcN.

3.1. The effect of removing fraction p of the weakest pillars

As it was previously mentioned, we tune the fraction p by varying it between
p = 0 and p = 0.8 with a step of 0.02. Therefore, at the beginning of the critical
loading process, the number of intact elements is equal to Np = (1− p)N. Thus, to
induce catastrophic avalanche of self-sustained cascades of pillar crushes, the critical
load fcN/Np has to be uniformly applied on all intact components. It is noted that,
assuming fixed fc, the increasing of p causes the growing of initial load imposed
locally on the intact pillars. However, such locally increased load is applied to the
array that is devoid of weakest elements. The effect of a decreasing population of



22 T. Derda

weak components is especially interesting in the case of the LLS-like rule where
catastrophic avalanche propagates in a form of clusters of crushed pillars initiated
in weak regions. The probability of finding a weak region of intact elements is
a decreasing function of p. However, from a certain value of p, the array becomes
too sparse to indicate enhanced strength.
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Fig. 1. (Left panel) Mean critical load ⟨ fc⟩ vs. fraction p. Systems with uniformly distributed
pillar-strength-thresholds. (Right panel) Mean strengthening/weakening of the LLS systems for

different types of distribution of pillar-strength-thresholds. Four upper dashed lines correspond to ratio
⟨ f GLS

c (p = 0)⟩/⟨ f LLS
c (p = 0)⟩ for uniform distribution, ρ = 2, ρ = 5 and ρ = 8 (from up to down).

Both panels concern results for systems of initial size N = 100×100

The left panel of Figure 1 reports values of empirical mean critical loads ⟨ fc⟩ as
a function of p for different types of load redistribution. It is seen, in the case of the
GLS rule, that values of ⟨ fc⟩ remain almost constant up to pc ≈ 0.5, and then they
start to decrease. Hence, in the mean-field-like approach with uniformly distributed
strength-thresholds, removal of up to 50 percent of the weakest pillars does not affect
the mean strength of the system. Similar behaviour is observed in the case of Weibull
distribution, however the transition points are different: pc ≈ 0.4 for ρ = 2, pc ≈ 0.18
for ρ = 5 and pc ≈ 0.12 for ρ = 8. Therefore, in the GLS systems, the smaller the
disorder is, the bigger the fraction of strongest pillars will need to be to support
fmax(p)≈ fmax(p = 0).

Another observation coming from the analyzed data is as follows: mean critical
loads for the other load transfer rules tend to the GLS one, as the fraction p increases
(see left panel of Fig. 1). Especially, in the case of the LLS rule the mean critical
load grows quite sharply to reach the value of its GLS counterpart at pc ≈ 0.5 (uni-
form distribution). When all the other systems converge to the GLS system at its
transition point pc, the values of ⟨ fc⟩ start to go down. From the transition point,
the applied load transfer rule is irrelevant, as all the systems behave like the GLS
one. By increasing the fraction p, the density of occupied nodes decreases, and thus
the effective range of the short range interactions grow.
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Table 1. Data corresponding to maximum strengthening for chosen examples

Initial system size N Load transfer Max ratio
⟨ fc(p)⟩

⟨ fc(p = 0)⟩
Fraction p

uniform

100×100

γ = 2 1.015 0.50
γ = 2.5 1.084 0.50
γ = 3 1.193 0.50
γ = 4 1.386 0.50

γ = 10 1.663 0.50
LLS 1.683 0.50

ρ = 2

60×60 LLS 1.420 0.40
100×100 LLS 1.478 0.40
140×140 LLS 1.517 0.40

ρ = 5

100×100 LLS 1.371 0.18

ρ = 8

100×100 LLS 1.311 0.12

We define the ratio θ(p) = ⟨ fc(p)⟩/⟨ fc(p= 0)⟩ as the mean strengthening (θ > 1)
or weakening (θ < 1) of the system. The scale of strengthening/weakening for
the LLS systems is visible in the right panel of Figure 1. Systems with uniformly
distributed pillar-strength-thresholds are strengthened even in the case of sparse
arrays (p = 0.8). Taking into consideration Weibull distribution, we notice that the
degree of strengthening is strongly dependent on the type of distribution of strength-
-thresholds: the maximum strengthening is an increasing function of the amount of
disorder. The point of maximum strengthening is shifted towards higher values of p as
the disorder increases. Four upper dashed lines visible on the right panel of Figure 1
refer to a ratio ⟨ f GLS

c (p = 0)⟩/⟨ f LLS
c (p = 0)⟩ i.e. how many times an average GLS

system with p = 0 is stronger than an average LLS system with p = 0. We can see
that each LLS system, for its own value of pc, reaches the above mentioned ratio.

The values of maximum strengthening together with the values of p related to
them are reported in Table 1. There is a significant size effect observed for the LLS
systems – the larger the system size the bigger the maximum strengthening.

3.2. The effect of elimination of elements by subcritical preloading

By applying fmax the array freezes in a stable state with Nsub (Nsub < N) crushed
pillars. Both fmax and Nsub are random variables. This raises a question: what is the
value of fc after the load fmax is released? To answer this question we have performed
the following procedure. We have chosen a specific type of load transfer – GLS, LLS
or a certain value of γ in the case of the RV rule. Then, for each system, we have
simulated the loading process (in the presence of N intact pillars) to find values of
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fmax and f N
c i.e. maximum strength and critical load without preloading. Then, we

have stored the configuration of the system after subcritical preloading, and for this
configuration we have performed simulation leading to the calculation of fc i.e. crit-
ical load for previously preloaded array. The above described procedure makes it
possible to determine the ratio ϕ = fc/ f N

c which expresses strengthening/weakening
of the preloaded array compared to its no preloaded counterpart.
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Fig. 2. (Left panel) The mean ratio ⟨ϕ⟩ as a function of parameter γ . Inset: the proportion of
observations inside a given interval of ϕ in the case of uniform distribution. (Right panel) Mean

critical load vs. γ for uniform distribution of pillar strength thresholds. Both panels concern systems of
initial size N = 100×100 pillars

To examine the behaviour of ⟨ϕ⟩ = ⟨ fc⟩/⟨ f N
c ⟩ for different effective ranges of

load transfer, we have explored the RV rule. In order to pass from long-range interac-
tions to short-range interactions, we have tuned values of γ from 0 to 10. For γ = 10,
the array behaves almost like the pure LLS system, whereas γ = 0 corresponds to
the GLS rule. The transition point between the GLS-like and LLS-like behaviour
has a value of about 2 (γc ≈ 2) [10]. The results of simulations are graphically re-
ported in the left panel of Figure 2. In the GLS-like regime (γ ⪅ 1), the application
of subcritical preloading has virtually no effect on the value of critical load. Then,
as the effective range of interactions is decreased, we have noticed weakening of the
systems. The weakening reaches its climax for γ

∗ ∈ (1.7,2) (depending on the distri-
bution of pillar-strength-thresholds) i.e. values around γc. After the climax point, the
ratio ⟨ϕ⟩ starts to grow rapidly with increasing γ , and then the increase of ⟨ϕ⟩ satu-
rates. For all analyzed systems we observe strengthening in the regime of short-range
interactions. However, the degree of strengthening is dependent on the distribution of
pillar-strength-thresholds. The most significant strengthening concerns systems with
a big amount of disorder of pillar-strength-thresholds.

It should be noted that the curves visible in the left panel of Figure 2 present
the average behaviour. Even when the arrays are, on average, strengthened, some
proportion of arrays may be weakened. To look closer into this, we arbitrarily divided
ϕ into three intervals: ϕ ≤ 0.97 (noticeable weakening), 0.97 < ϕ < 1.03 (slight
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change of critical load) and ϕ ≥ 1.03 (noticeable strengthening). The effect of this
division is shown in the inset of Figure 2. Up to γ = 1.3 there are no systems with
ϕ ≥ 1.03 or ϕ ≤ 0.97. Furthermore, up to γ = 2 there are no systems with ϕ ≥ 1.03. In
the LLS-like regime, there is a dominance of ϕ ≥ 1.03, although a small proportion
of systems becomes noticeably weakened.

The right panel of Figure 2 shows the mean critical loads for systems before and
after preloading. In both of these cases, the critical load is a decreasing function of
γ . For the GLS rule (γ = 0), there is no effect of preloading (⟨ f N

c ⟩= ⟨ fc⟩), then ⟨ fc⟩
starts to go down faster than ⟨ f N

c ⟩. The turning point is located around γ = 2.8. From
this value of γ the preloading, on average, leads to the strengthening of the system.
Hence, the subcritical preloading causes the growth of mean critical load in the
significant presence of short-range interactions. When the long-range interactions
dominate or short-range interactions are relatively weak, we observe a lack of strength-
ening or even a weakening of the systems.
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Fig. 3. (Left panel) Mean fraction of pillars crushed during subcritical preloading vs. γ . (Right panel)
Correlation coefficient r between fc and f N

c as a function of γ . Both panels concern systems of initial
size N = 100×100 pillars

As the array is preloaded, the fraction U = Nsub/N of its pillars is eliminated from
the working elements. The mean value of U is dependent from distribution of {σth}
as well as from the effective range of interactions (see left panel of Fig. 3). Generally,
⟨U⟩ decreases as the effective range of interactions is reducing. Consider the regime
of short-range interactions. Note that the bigger the dispersion of {σth} is, the larger
the ⟨U⟩ is, and the larger the mean strengthening ⟨ϕ⟩ is as well. Hence, elimination of
a relatively large part of a population in the case of uniform distribution induces much
more significant strengthening than in the case of ρ = 8, where only a very small part
of the population is eliminated via subcritical preloading. The key point here is that,
in the LLS-like regime, during the load redistributions strong load inhomogeneities
arise due to load concentration in the weak regions.

Strongly disordered arrays contain a relatively large number of weak elements –
as opposed to the arrays with small disorder. Following the preloading procedure,
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the actual critical loading is performed by initially uniformly applied load on all intact
pillars in the array in the absence of weak elements. Thus, the strongly disordered
systems exhibit, on average, noticeable strengthening when the LLS-like rule governs
the load transfer.

As in the GLS scenario, the application of subcritical preloading has no effect on
the critical load, thus fc and f N

c exhibit a perfect linear relationship. For γ > 0, we
employed Pearson’s correlation coefficient r to statistically analyze the relationship
between fc and f N

c . The results are presented in the right panel of Figure 3. For small
values of γ , we observe a strong positive relationship. However, as the systems cross
from long-range to short-range interactions, the values of r dramatically decrease to
achieve negative values of r, and then there is a significant increase of r. In the short-
range regime, the curve of r has a plateau-like shape, and the two analyzed values are
lightly (or moderately) positively correlated.
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Fig. 4. (Left panel) Fraction of systems with ϕ > 1 as a function of γ . Initial system size
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Figure 4 illustrates the fraction χ of arrays that show strengthening (ϕ > 1) by
subcritical preloading. Under the RV rule (left panel of Fig. 4), we observe that the
majority of the arrays indicates strengthening only in the dominance of short-range
interactions. From the right panel of Figure 4, we see that χ is an increasing function
of N. The size effect is noticed under the LLS and LLS-like rules. However, in the
right panel of Figure 4, some fluctuations are visible (especially for ρ = 8) due to
sample size M, but the tendency is clear.

Taking short-range interactions into account, let’s divide our sample population
into two disjoint groups: arrays with enhanced critical loads (ϕ > 1) and arrays with
deteriorated critical loads (ϕ < 1). The results of this partition are given in Figure 5
in the case of the RV rule with γ = 10. It is seen that the weakening concerns
relatively stronger arrays and, after the preloading procedure, these arrays are among
the weakest ones. This behaviour is observed in the case of short range interactions
for all analyzed system disorders. It is noted that the loss of strength is, on average,
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much smaller than the enhancement of critical load observed for the other arrays
(see Table 2). Furthermore, also on average, critical loads fc (after preloading) for
systems with ϕ < 1 are bigger than critical loads f N

c (before preloading) for systems
with ϕ > 1.

Fig. 5. Histogram of critical loads before (left panel) and after (right panel) subcritical preloading.
Arrays with N = 100×100 under the RV rule with γ = 10 and uniform distribution

Table 2. Fractions of arrays that exhibit strengthening and mean critical loads divided into two groups
for chosen configurations in the presence of short-range interactions. Initial system size N = 100×100

Load
transfer

Fraction χ

Before preloading After preloading

⟨ f N
c |ϕ > 1⟩ ⟨ f N

c |ϕ < 1⟩ ⟨ fc|ϕ > 1⟩ ⟨ fc|ϕ < 1⟩

uniform

γ = 4 0.843 0.1790 0.1877 0.1933 0.1814
γ = 6 0.910 0.1575 0.1668 0.1745 0.1615
γ = 10 0.919 0.1496 0.1595 0.1667 0.1536
LLS 0.915 0.1480 0.1573 0.1649 0.1515

ρ = 2

γ = 4 0.800 0.3304 0.3444 0.3509 0.3342
γ = 6 0.862 0.3010 0.3154 0.3245 0.3062
γ = 10 0.864 0.2904 0.3047 0.3146 0.2956
LLS 0.863 0.2882 0.3031 0.3121 0.2937

In the last part of the section we return to the size effect observed in the LLS case.
It is known that fc ∼ 1/ lnN. The formula for the mean critical load is given by

⟨ fc⟩=
α

lnβ (
√

N)
(3)

where α and β are coefficients to be fitted. Figure 6 illustrates mean critical loads
as a function of

√
N for arrays before and after preloading. The strong size effect

is evident for both scenarios. Values of the fitted parameters are included in Table 3.
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As can be seen from the insets (of Fig. 6), the mean value of ϕ initially is an increas-
ing function of N, however, it seems to gradually saturate for bigger system sizes.
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Table 3. Values of fitted parameters α and β from the Eq. (3)

System
disorder

Before preloading After preloading

α β α β

uniform 0.2831 0.4217 0.2939 0.3829
ρ = 2 0.4947 0.3500 0.5015 0.3165
ρ = 5 0.6799 0.2958 0.7068 0.2897
ρ = 8 0.7793 0.2661 0.8032 0.2631

4. Conclusion

We have numerically studied critical loads in suddenly loaded pillar arrays in the
absence of some elements. In the first situation, it is assumed that a fraction p of
weakest pillars is removed from the system prior to the actual critical loading pro-
cedure. Excluding the GLS rule, the mean critical load for all analyzed load transfer
rules is an increasing function of p up to the transition point pc. From the transi-
tion point, the mean critical load for a given configuration is the same irrespective
of the applied load redistribution rule. Additionally, for p > pc, the mean critical
load starts to decrease. Therefore, the value of pc determines the maximum strength-
ening of non-GLS arrays. The degree of strengthening and corresponding to it pc

are dependent on three factors: load transfer rule, system disorder and system size.
The maximum strengthening is achieved in the case of the LLS rule and uniform
distribution of pillar strength thresholds. In this case, we obtained an increase in
strength of about two thirds.



Critical loading of pillar arrays having previously eliminated elements 29

In the second procedure, the actual critical loading of array is preceded by subcrit-
ical preloading. The number of pillars eliminated from the array during preloading
is a random variable. In the context of critical load, the effect of preloading is neu-
tral for the GLS rule (γ = 0). When the effective range of interactions is increased
from γ = 0 to γ

∗ ∈ (1.7,2), we observe, on average, progressive weakening of the
systems. Then, in the regime of short range interations, we have noticed strengthen-
ing of the arrays. The degree of strengthening/weakening and the exact position of
γ
∗ are dependent on the distribution of pillar-strength-thresholds. Taking, for exam-

ple N ∈
(
1002,3002) and the LLS rule, the mean strengthening attains ∼ 11% and

∼ 3.7% for uniform distribution and Weibull distribution with ρ = 8, respectively.
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