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Abstract. We consider purely singular homogeneous Young measures associated with
elements of sequences of piecewise constant functions and with limits of such sequences. We
first consider a case when the limit of a such sequence is piecewise constant. The next point
involves the sequences of bounded oscillating functions, divergent in the strong topology in
L∞, but weakly∗ convergent to a homogeneous Young measure. We also present an example
of a fast oscillating sequence, illustrating the result. In the presented results, generalizing to
some extent known examples, we try to avoid advanced methods of functional analysis that
are usually used when solving problems of this type.
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1. Introduction

Young measures were discovered in the context of the variational problems con-
cerning minimization of integral functionals that are bounded from below. The first
work proving the existence of the objects referred to today as ’Young measures’ and
investigating their basic properties is [1]. O. Bolza and L.C. Young himself presented
examples of bounded integral functionals that did not attain their infima. One of the
most popular methods of minimization functionals in the calculus of variation is the
so called direct method. It is based on analysis of the minimizing sequences of the
considered functionals. The minimizing sequences in the examples by Bolza and
Young are of a highly oscillatory nature. They are bounded but divergent in the sui-
table for the problem normed space (usually a Sobolev one). They are convergent
in a weak (or weak∗) topology. However, investigating their limits requires an en-
largement of the space of admissible functions from the ’usual’ space of functions
with values in, say, Rl , to the space of scalar-valued measures defined on the Borel
σ -algebra of subsets of Rl . These ’generalized limits’, in a way, summarize the spa-
tial oscillatory properties of the minimizing sequences. Unfortunately, the calculation
of a generalized limit, i.e. a Young measure associated with a minimizing sequence,
is usually very difficult.



Certain convergence results for homogeneous singular Young measures 45

Young measures appear in the mathematical analysis of certain engineering
problems, for example in the investigation of the infima of the energy functionals
of certain shape-memory alloys, like Ni-Ti or Cu-Al-Ni. Since the infima of the
energy functionals in this case are not attained, the respective minimizing sequences
are rapidly oscillating. These oscillations reveal a phenomenon called a microstruc-
ture. As it is observed in [2], "(. . . ) a microstructure is any structure on a scale
between the macroscopic scale (on which we usually make observations) and the
atomic scale. Such structures are abundant in nature: the fine hierarchical structures
in leaf and many other biological materials, the complex arrangements of fissures,
cracks, (. . . ), man-made layered or fibre-reinforced materials and fine phase mixtures
in solid-solid phase transformations, to quote but a few examples".

The techniques involving the Young measures apparatus have turned out to be
useful in investigating problems in differential equations with oscillatory phenomena.
The considered problems are often of a physical or engineering origin. With this
respect, the reader may have a look at [3–12] (and the references therein), from
the broad spectrum of articles on this subject.

In this article, we look at a Young measure as a value of a weakly∗-measurable
mapping defined on a domain of definition of considered functions. We use the fact,
that with any bounded, Borel, Rl-valued function there exists a Young measure as-
sociated with it. This approach makes calculating generalized limits of sequences of
rapidly oscillating functions in many practically significant cases easier. We focus on
the purely singular case, when both the elements of function sequence and its limit
are discrete.

The structure of the article is as follows. In the next section, we recall facts con-
cerning Young measures together with some notions from functional analysis that
are used in the article. The third part of the article, containing main results, is divided
into two parts. In the first one we consider sequences of simple functions pointwise
convergent to some simple function. The second part is devoted to those sequences
of simple functions that are only weakly∗ convergent to generalized limits being res-
pective Young measures. The result is illustrated by an example generalizing usual
examples of purely discrete Young measures associated with sequences of rapidly
oscillating functions. Finally, the Conclusions section closes the main body of the
article.

2. Some necessary facts about Young measures

We begin with setting notation and formulating basic facts. For more detailed
information and bibliographical suggestions for further reading on Young measures,
we refer the reader to [13–16].

Let Ω be an open subset of Rd , such that µ(Ω) = M > 0, where µ is the Lebesgue
measure on Ω .
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We first recall the notions of basic types of convergences in Banach spaces and
the notion of weak∗-measurability.

Definition 1 Let Z be a Banach space, Z∗ – the conjugate of Z (i.e. the space of all
continuous linear functionals on Z). Let (zn) be a sequence in Z and ( fn) – a sequence
in Z∗.

(a) we say that (zn) is weakly convergent to z ∈ Z, if for all f ∈ Z∗ there holds
lim
n→∞

f (zn) = f (z);
(b) we say that ( fn) is weakly∗ convergent to f ∈ Z∗, if for all z ∈ Z there holds

lim
n→∞

fn(z) = f (z);
(c) denote by ⟨·, ·⟩ a dual pair that is a real valued mapping defined on Z∗ × Z,

linear in each variable separately. We say that a mapping

g : Ω → Z∗

is weakly∗-measurable, if for any z ∈ Z the function

x 7→ ⟨g(x),z⟩

is measurable. 2

We will use the following notation:
• the letter K denotes a nonempty compact subset of Rl while U – the set of all

Borel measurable functions on Ω with values in K;
• rca(K) – the space of regular, countably additive scalar measures on K,

equipped with the norm ∥m∥rca(K) := |m|(K), where | · | stands in this case for
the total variation of the measure m. By definition, |m|(K) = sup∑

i
|m(Ki)|,

where the supremum is taken over all partitions of the set K. With this norm,
rca(K) is a Banach space;

• rca1(K) – the subset of rca(K) with elements being probability measures on K;
• L∞

w∗(Ω , rca(K)) – the set of the weakly∗ measurable mappings

ν : Ω ∋ x → ν(x) ∈ rca(K),

assigning to the points from the domain of definition of u ∈ U the measures
on the range of u and such that

esssup
{
∥ν(x)∥rca(K) : x ∈ Ω

}
<+∞.

The Definition 1 applied to the case described by the above settings together with
the Riesz Representation Theorem yield that ν is a weakly∗ measurable mapping if
for any β ∈C(K) the function

x 7→
∫
K

β (k)(ν(x))(dk) = ⟨ν(x),β ⟩

is Borel measurable. Observe that if u ∈ U , then u(x) ∈ K.
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It turns out that with any u ∈ U we can associate a weakly∗-measurable mapping
from L∞

w∗(Ω , rca(K)), such that the values of this mapping belong to rca1(K). This is
one of the corollaries of the basic Theorem 3.6 in [17], see also Theorem 2 in [13].
We call them the Young measures and denote the set of Young measures by Y (Ω ,K):

Y (Ω ,K) :=
{

ν = (ν(x)) ∈ L∞
w∗(Ω , rca(K)) : νx ∈ rca1(K) for a.a x ∈ Ω

}
.

We will write νx or (νx)x∈Ω instead of ν(x). To emphasize the Young measure associa-
ted with particular function u ∈ U , we will write ν

u. If the Young measure (νx)x∈Ω

does not depend on the parameter x ∈ Ω , it is called homogeneous.
Finally, recall that a sequence (νn) of bounded measures on a compact set K ⊂Rl

converges weakly∗ to a measure ν0, if ∀β ∈C(K,R) there holds

lim
n→∞

∫
K

β (k)dνn(k) =
∫
K

β (k)dν0(k), (1)

see for example Theorems 15.3 and 15.11 in [18].

3. Convergent and divergent sequences of simple functions

We consider sequences of functions that are piecewise constant. If for every x ∈ Ω

we have u(x)= p∈Rl , where p is fixed, then ν
u = δp. Let a family {Ωi}n

i=1 be a finite
open partition of the set Ω , that is, the sets in this family satisfy the conditions:

(P1) Ωi ∩Ω j = /0 for i ̸= j, 1 ≤ i, j ≤ n;

(P2)
n⋃

i=1

cl(Ωi) = cl(Ω);

(P3) ∀i ∈ {1, . . . ,n}, Ωi = interior
(
cl(Ωi)

)
,

where ’interior’ stands for the topological interior of a set and ’cl’ stands for the
closure of a set. Denote by diamΩi a diameter of the partition {Ωi}:

diamΩi := max{mi : i = 1, . . . ,n},

where mi := µ(Ωi). We will say for brevity that a piecewise constant function u
on Ω is associated with a partition {Ωi}n

i=1, if it is constant on each subset Ωi,
i = 1,2, . . . ,n. We can also start from considering a piecewise constant function on
Ω , taking a finite number of values, each on a subset having a positive Lebesgue
measure and say that this function determines a finite partition of Ω . Such a partition
satisfies the three conditions above. It is known (see for example [19]) that the Young
measure associated with u is a discrete measure and is of the form

ν
u = 1

M

n

∑
i=1

miδpi , (2)
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where pi is the value that u takes on the set Ωi, i = 1,2, . . . ,n. Since ν
u does not

depend on the argument of the function u, it is a homogeneous Young measure.

3.1. Pointwise convergence case

Consider a piecewise constant function uk on Ω , associated with a partition
{Ω

k
i }

n(k)
i=1 :

uk(x) :=
n(k)

∑
i=1

p(k)i 1
Ω k

i
(x), (3)

where 1A denotes the characteristic function of the set A. Then, all the values taken

by the elements of the sequence (uk) lie in a closure of the set K :=
∞⋃

k=1

uk(Ω), so they

are in a compact set. Assume, that this sequence is pointwise convergent to a function

u0(x) =
n0

∑
i=1

p0
i 1

Ω 0
i
(x).

On the basis of the equation (2), and the fact that Rl is a separable metric space,
we can say that the Young measure associated with the limit function u0 is of the
form

ν
u0 = 1

M

n0

∑
i=1

m0
i δp0

i
.

3.2. Pointwise divergence case

Choose and fix the vectors p1, . . . , pn ∈ Rl . Let a function u1 on Ω be piecewise
constant and takes the value pi on the set having the respective Lebesgue measure
m1

i > 0, i = 1, . . . ,n. The value pi, for a fixed i, can be taken by u1 on different
disjoint subsets of Ω , of positive Lebesgue measures summing up to m1

i . Obviously,
n

∑
i=1

m1
i = M. This function determines a finite partition {Ω

1
i1}i1∈I1

of the set Ω ,

satisfying the conditions (P1)-(P3). The diameter of this partition is equal to
d1 = diamΩ

1
i . Denote by a1 an n-dimensional vector with the respective coordinates

equal to m1
1, . . . ,m

1
n.

The Young measure associated with the function u1 is of the form

ν
u1 =

1
M ∑

i=1
m1

i δpi .

Consider now a function u2 that takes the value pi on the set having the respective
Lebesgue measures m2

i > 0, i = 1, . . . ,n. Analogously as above, the value pi, for fixed
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i, can be taken by u2 on different disjoint subsets of Ω , and
n

∑
i=1

m2
i = M. The function

u2 determines a finite partition {Ω
2
i2}i2∈I2

of the set Ω , satisfying the conditions
(P1)-(P3). We want the cardinality of the set I2 of indices to be bigger than the car-
dinality of the set I1. The diameter of this partition is equal to d2 = diamΩ

2
i . Denote

by a2 an n-dimensional vector with the respective coordinates equal to m2
1, . . . ,m

2
n.

Proceeding this way, we obtain a sequence (uk) of piecewise constant oscillating
functions taking the values p1, . . . , pn and a sequence (ak) of n-dimensional vectors
with coordinates equal to the Lebesgue measures of the sets, on which the respective
values are taken by these functions. The functions uk determine the partitions with
respective diameters dk. Assume additionally that lim

k→∞

dk = 0 and that lim
k→∞

ak = a0,

where a0 = [m0
1, . . . ,m

0
n] and m0

i > 0, i = 1, . . . ,n, with
n

∑
i=1

m0
i = M.

Observe that the sequence (uk) is not convergent to a function on Ω with values

in Rl , since the graphs of its elements ’tend’ to a set
n⋃

i=1

(Ω × pi) as k tends to infinity,

which is not a graph of any function. However, we have the following result.

Theorem 1 Let there be given a sequence (uk) of functions of the form as described
above. Let (νuk

k ) be a sequence of Young measures associates with the respective
elements of the sequence (uk). Then (νuk

k ) is weakly∗ convergent to a Young measure
ν0 of the form

ν0 =
1
M

n

∑
i=1

m0
i δpi .

PROOF Choose and fix a function β ∈C(K,R). Then there holds:∣∣∣∫
K

β (k)dν
uk −

∫
K

β (k)dν
0
∣∣∣= ∣∣∣∫

K

β (k)d
( 1

M

n

∑
i=1

mk
i δpi

)
−

∫
K

β (k)d
( 1

M

n

∑
i=1

m0
i δpi

)∣∣∣≤
≤ 1

M
sup

K
β ·

n

∑
i=1

|mk
i −m0

i | −−−→k→∞

0.

The result then follows from the arbitrariness of the choice of β and the equation
(1). ■

Example 1 Consider a partition {Ω
(1)
i }n

i=1 of the set Ω and assume that this partition
satisfies the conditions (P1)-(P3). Choose and fix points p1, . . . , pn ∈ Rl and let
K := {p1, . . . , pn}. The set K is finite, so it is compact. The function

u1(x) :=
n

∑
i=1

pi1
Ω

(1)
i
(x) (4)

is piecewise constant on Ω and is associated with the partition {Ω
(1)
i }n

i=1.



50 P. Puchała

Next, take a set Ω
(1)
1 and consider its partition into the open sets Ω

(2)
1,1 ,Ω

(2)
1,2 , . . . ,Ω

(2)
1,n

in such way that for any j = 1,2, . . . ,n there holds

µ
(
Ω

(2)
1, j

)
µ
(
Ω

(1)
1

) =
µ
(
Ω

(1)
j

)
µ(Ω)

,

that is

µ
(
Ω

(2)
1, j

)
=

µ
(
Ω

(1)
j

)
·µ

(
Ω

(1)
1

)
µ(Ω)

. (5)

We proceed analogously with the remaining elements of {Ω
(1)
i }n

i=1, obtaining an
open partition

Ω
(2)
1,1 , Ω

(2)
1,2 , . . . ,Ω

(2)
1,n , Ω

(2)
2,1 , . . . ,Ω

(2)
2,n , . . . ,Ω

(2)
n,n

of the set Ω , satisfying the conditions (P1)-(P3).
Let a function u2, associated with this partition, take the value p1 on the sets

Ω
(2)
1,1 , Ω

(2)
2,1 , . . . ,Ω

(2)
n,1 , the value p2 on the sets Ω

(2)
1,2 , Ω

(2)
2,2 , . . . ,Ω

(2)
n,2 , and so on up to pn.

Then u2 takes the value p1 on the set having a Lebesgue measure equal to µ
(
Ω

(1)
1

)
,

the value p2 on the set having Lebesgue measure equal to µ
(
Ω

(1)
2

)
, and so on.

Continuing this way, we obtain a sequence (uk) of piecewise constant functions,
such that each element of this sequence takes the value p1 on the set having Lebesgue
measure equal to µ

(
Ω

(1)
1

)
,. . . , the value pn on the set having a Lebesgue measure

equal to µ
(
Ω

(1)
n

)
. The diameters of the respective partitions form a convergent to

zero sequence of reals. Furthermore, the sequence (uk) has the properties:
• it is divergent in L∞;
• the sequence (ak) of the n-dimensional vectors with the coordinates equal to

the Lebesgue measure of the sets, on which uk takes the respective values, is
constant;

• the sequence of Young measures associated with the respective elements of
(uk) is constant. Each element of this sequence of measures is of the form

ν
uk =

1
M

n

∑
i=1

µ
(
Ω

(1)
i

)
δpi .

Thus the sequence
(
ν

uk
)

is trivially convergent in the norm topology of rca(K), so it
is all the more weakly∗ convergent. This Young measure is also a generalized weak∗

limit of the sequence (uk). 2

4. Conclusion

Homogeneous discrete Young measures appear for example in optimization, when
searching the minimizers of the multiwell problems, see for instance [2], [17] or [20]
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and the references therein. Usually, calculating an explicit form of generalized limit
of a function sequence, which in our case is a measure-valued mapping, is a difficult
task and involves advanced methods of functional analysis. In this article, we propose
a method that generalizes and simplifies, at least to some extent, calculating those
limits in some specific, but not rare, cases. This may be useful in some applications,
in particular in engineering.

It seems useful to consider the sequences of Young measures associated with the
respective elements of the function sequence of interest, and to investigate the exis-
tence and the form of the weak∗ limits of this sequence of measures.

It also turns out that we can expect the strong convergence of the sequence of mea-
sures only in the case, when the respective sequence of Young measures is constant.
When it is not, the norms ∥ν

uk −ν
u0∥rca(K) does not tend to zero as k → ∞. It follows

from the fact that the total variation norm of a discrete measure with the component
Dirac measures supported at different points is the sum of the absolute values of the
respective coefficients.
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