
Journal of Applied Mathematics and Computational Mechanics 2023, 22(4), 64-78
www.amcm.pcz.pl p-ISSN 2299-9965
DOI: 10.17512/jamcm.2023.4.06 e-ISSN 2353-0588

PARTIAL MATHEMATICAL MODELING AND ANALYSIS
OF THE AES SYSTEM

Sylwia Stachowiak1, Mirosław Kurkowski2

1 Department of Computer Science, University SWPS
Warsaw, Poland

2 Institute of Computer Sciences, Cardinal Stefan Wyszyński University Warsaw, Poland
sstachowiak@swps.edu.pl, m.kurkowski@uksw.edu.pl

Received: 31 July 2023; Accepted: 8 October 2023

Abstract. Many types of decision problems can be solved using mathematical modeling
and analysis. Such techniques are also developed on the border of mathematical logic
and computer science. A good example is the translation of the issues examined into the
Satisfiability Problem (SAT) of a logical propositional formula. Unfortunately, this method
is not always practical, considering the high computational complexity of solving the SAT
problem. It often happens that in the studied cases, the encoding formulas contain even
hundreds of thousands of clauses and propositional variables. However, even in these cases,
modern SAT solvers can sometimes successfully solve these problems. This approach can
be used to cryptanalyze some symmetric ciphers or parts/modifications. In this case, the
encryption algorithm is first translated into a boolean formula. Then additional formulas are
created to encode randomly selected plaintext and the key bits. Using the SAT solver; we
can count the values of the ciphertext bits. Then, using the SAT solver again, we proceed
to the cryptanalysis of the cipher with the selected plaintext and proper ciphertext, looking
for the bits of the encryption key. In this paper, we will present the new results of how SAT
techniques behave against representative fragments of the AES cipher, the current standard
for symmetric encryption. We also compare the results obtained in this case by several SAT
solvers. In addition, we present the results of the SAT-solver CryptoMiniSat obtained during
the attack on the 1st round of the AES-128 cipher.

MSC 2010: 03B70, 94A60
Keywords: mathematical modeling, AES, symmetric ciphers, satisfiability, SAT-based
cryptanalysis

1. Introduction

The SAT problem is a classical problem in the NP class, meaning it can be solved
in polynomial time on a nondeterministic Turing machine. Another way to define an
NP problem is that checking a solution provided by an external source has polynomial
complexity. SAT is the first problem proven to be NP-complete [1]. It is important to
note that any other problem in NP can be reduced to SAT in polynomial time, making
it a complete problem in the NP class.

Partial mathematical modeling and analysis of the AES system 65

The SAT problem determines whether a given propositional formula is satisfi-
able. Thus, the satisfiability problem focuses on finding such an evaluation of the
variables in the formula that the value of the formula is 1. If there is at least one such
evaluation, then the formula is called satisfiable (SAT). Otherwise, the determination
formula is unsatisfiable (UNSAT).

The problem of the satisfiability of logical formulas is decidable. The simplest
method of solving this problem is the method consisting in considering all possible
evaluations of variables occurring in the logical formula. If the number of variables
in the formula is n, then we get 2n of such substitutions. Thus, this method of solving
the SAT problem has an exponential computational complexity [2].

Boolean and SAT encoding, among other mathematical methods of software sys-
tems specification and verification [3, 4], can be used to solve problems in many
fields [5–10]. This approach usually consists in transforming the studied problems
into the SAT problem, solving it, and then mapping the obtained model to the solu-
tion of the source problem.

SAT solvers have been used to analyze cryptographic algorithms for many years.
For example, Courtois and Pieprzyk continued the work described in [11]. In 2006,
they performed algebraic attacks on the DES cipher using SAT solvers, using the
polynomial equivalence of two NP-hard problems [2].

In the case of the AES cipher, Gwynne and Kullmann published a paper that
describes the encoding of the transformation SubBytes() and the multiplication •
of a polynomial from the field GF(256) by x and x+1 using various heuristics. The
authors also presented an AES to CNF translation, but unfortunately, they have not
tested it, and there is no certainty that it is equivalent to the AES cipher [12].

This paper presents a different approach to the cryptanalysis of encryption al-
gorithms using SAT techniques. In our method, we do not describe the algorithm
using algebraic equations nor do we encode them into boolean formulas. Instead,
we use the direct boolean encoding of the encryption algorithm, as was done in the
works of [13–16]. In this article, we describe how the SAT techniques for the AES
cipher behave. To the best of our knowledge, a complete encoding of an AES cipher
using direct boolean encoding has not been previously published. The AES encoding
formula we presented has been tested and is equivalent to the AES cipher.

The rest of the article is organized as follows. Section 2 contains all the informa-
tion you need about the AES cipher. We do this to the extent necessary to explain our
approach to the cryptanalysis of a cipher using SAT coding. Section 3 describes the
method of encoding the AES actions into a boolean formula. Section 4 describes the
conversion of boolean formulas to conjunctive normal form and then to the DIMACS
format. Section 5 presents our experimental results. At the end of the article, there
are conclusions and directions for further research that we are conducting.

66 S. Stachowiak, M. Kurkowski

2. The AES cipher

In 2001, the NIST (National Institute of Standards and Technology) adopted the
current Advanced Encryption Standard (AES) as FIPS-197 [17], thus replacing
the DES standard. The winner of the competition announced in 1997 by NIST was
Rijndael. Rijndael is a family of ciphers with different key lengths and different
block sizes. The name Rijndael comes from the names of the creators of the cipher,
Joan Daemen and Vincent Rijmen. AES includes three algorithms from the
Rijndael family, each of which can process 128-bit blocks of data using a 128-bit,
192-bit, or 256-bit encryption key, depending on the selected algorithm. In 2016,
Ashokkumar C., Ravi Prakash Giri and Bernard Menezes presented a side-channel
attack on AES implementations that can recover the complete 128-bit AES key in just
6-7 blocks of plaintext/ciphertext, which is a substantial improvement over previous
works that require between one hundred and a million encryptions [18].

2.1. AES specification

When the AES algorithm runs, transformations are performed on a two-
-dimensional array of bytes called the state [17]. The state consists of four rows
of bytes; each row, for the AES standard, consists of four bytes. The state table is
denoted by the letter s, and each byte in it has two indices: r and c, where r is the row
number and 0 ≤ r ≤ 3, and c is the column number and 0 ≤ c ≤ 3.

A block of input data input0input1input2 . . . input127 with a length of 128 bits is
stored in the byte array in such a way that: in0 = input0, input1, . . . , input7,
in1 = input8, input9, . . . , input15, . . . , in15 = input120, input121, . . . , input127. Longer
sequences, such as 192-bit and 256-bit keys, are placed in the state according to the
following formula: inn = input8ninput8n+1, . . . , input8n+7. When starting encryption
or decryption, the algorithm copies the input in0, in1, . . . , in15 to the state according
to the scheme: sr,c = inr+4c, for 0 ≤ r ≤ 3 and 0 ≤ c ≤ 3. It then performs encryption
or decryption on that state to finally copy its final value into the output byte array as
follows: outr+4c = sr,c, for 0 ≤ r ≤ 3 and 0 ≤ c ≤ 3.

The number of rounds (Nr) performed in AES depends on the key size. AES does
ten rounds for a 128-bit key, 12 for a 192-bit key, and 14 for a 256-bit key.

The AES algorithm uses a Substitution Permutation Network (SPN) structure,
where the substitution is performed by SubBytes(), and for the permutation combin-
ing the transformations ShiftRows() and MixColumns().

2.2. AES transformations

The SubBytes() transformation is non-linear and operates independently on each
state byte using a substitution table (S-box). The S-box, written in hexadecimal, used
in the SubBytes() transformation is presented in paper [17]. This S-box is built
based on two transformations: the multiplicative inverse in the finite field GF(256),

Partial mathematical modeling and analysis of the AES system 67

additionally assuming that the multiplicative inverse of the 0x00 element is itself and
the following affine transformation over GF (2): b′i = bi ⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕
b(i+6)mod8 ⊕b(i+7)mod8 ⊕ci for 0 ≤ i ≤ 7, where bi is the i byte bit, and ci is the ith bit
by c, which has a value of 0x63 or 01100011.

ShiftRows() cycles the bytes left in the second, third, and fourth rows of the state
one, two, and three places, respectively. The first line remains unchanged. The state
is modified according to the equation s′r,c = sr,(c+shi f t(r,4))mod4, for 0 < r < 4 and
0 ≤ c ≤ 4, where the shift value shi f t(r,4) depends on the line number r it is:
shi f t(0,4) = 0;shi f t(1,4) = 1;shi f t(2,4) = 2;shi f t(3,4) = 3.

MixColumns() uses data from all state columns and then mixes them to create
new columns by doing the following:

s′0,c = ({02}• s0,c)⊕ ({03}• s1,c)⊕ s2,c ⊕ s3,c,

s′1,c = s0,c ⊕ ({02}• s1,c)⊕ ({03}• s2,c)⊕ s3,c,

s′2,c = s0,c ⊕ s1,c ⊕ ({02}• s2,c)⊕ ({03}• s3,c) ,

s′3,c = ({03}• s0,c)⊕ s1,c ⊕ s2,c ⊕ ({02}• s3,c) ,

where • is a polynomial multiplication in the field GF(256) modulo, the specially
chosen irreducible polynomial of degree eight over GF(2) : x8 + x4 + x3 + x + 1
(see for details [17]).

The procedure AddRoundKey() adds a modulo two round key to the state. Each
round key consists of 4 words that are placed in the key schedule, and these words
are added to the stat columns as follows: [s′0,c,s

′
1,c,s

′
2,c,s

′
3,c] = [s0,c,s1,c,s2,c,s3,c]⊕

[wround∗4+c] for 0 ≤ c ≤ 4, where [wi] is the key words included in the key schedule,
and round is between 0 ≤ round ≤ Nr. The AddRoundKey() transformation is called
before the first use of the round function – the initialization key is scanned into the
state when round = 0. The AddRoundKey() routine is used in Nr rounds of the AES
cipher when 1 ≤ round ≤ Nr.

A round key set is a one-dimensional array of 4-byte words created by the
Key Expansion procedure. This algorithm retrieves the K cipher key and gener-
ates 4(Nr+1) words. An initial set of 4 words is required for the algorithm to work,
and each of the Nr rounds requires 4 keywords. The resulting set of keys consists
of a linear array of 4-byte words, labeled [wi], where i ∈ [0,4(Nr+1)). In the case of
a 128-bit key, this table has the form: [w0,w1, ...,w43]. Extending the input key to
a set of keys follows the scheme presented in [17].

3. Boolean encoding

In this part of the article, we will present the transformation of the functions
included in the AES algorithm to boolean formulas. For this purpose, we use the
direct boolean encoding method.

68 S. Stachowiak, M. Kurkowski

3.1. Boolean encoding of SubBytes() transformations

The SubBytes() transformation is used in the AES algorithm in the main round
function as well as for creating the key table. The S-box used in AES is a square
matrix of 16 × 16, each element being a different eight-bit vector. These vectors
are represented in hexadecimal form as digraphs. Hence, we can consider S-box as
a function of type Sbox : {0,1}8 → {0,1}8. For the sake of simplicity, denote by x̄
the vector (x1, . . . ,x8) and by Sk

box (x̄) the k-th coordinate of Sbox (x̄) for k = 1,2, . . . ,8.
We can code the S-box as the following boolean formula:

φSbox :
∧

x̄∈{0,1}8

(
8∧

i=1

(¬)1−xi pi ⇒
8∧

j=1

(¬)1−S j
box(x̄)q j

)
,

where (p1, . . . , p8) is the input vector to the S-box and (q1, . . . ,q8) is the output vector.
Additionally, we denote p and ¬p by (¬)0 p and (¬)1 p, respectively.

3.2. Boolean encoding of MixColumns() transformations

The MixColumns() procedure transforms the successive columns of the state
table, assuming that we start numbering the columns from zero. By (p1, p2, . . . , p128),
where pi ∈ {0,1}, for i = 1,2, . . . ,128 let’s denote the vector representing the input
data stored in the state table and by (q1,q2, . . . ,q128), where qi ∈ {0,1}, for i = 1,2,
. . . ,128, let’s denote the vector representing the output after the MixColumns()

operation. The boolean encoding of the MixColumns() transformation can be written
as follows:

s′0,c = ({02}• s0,c)⊕ ({03}• s1,c)⊕ s2,c ⊕ s3,c

for the first state column written using a boolean formula is:

qi ⇔ pi+1 ⊕
(

p(i+8)+1 ⊕ pi+8
)
⊕ pi+16 ⊕ pi+24

qi ⇔ pi+1 ⊕ p1 ⊕
(

p(i+8)+1 ⊕ p9 ⊕ pi+8
)
⊕ pi+16 ⊕ pi+24

qi ⇔ pi+1 ⊕
(

p(i+8)+1 ⊕ pi+8
)
⊕ pi+16 ⊕ pi+24

qi ⇔ pi+1 ⊕ p1 ⊕
(

p(i+8)+1 ⊕ p9 ⊕ pi+8
)
⊕ pi+16 ⊕ pi+24

qi ⇔ p1 ⊕ (p9 ⊕ pi+8)⊕ pi+16 ⊕ pi+24.

for i = 1, . . . ,3, i = 4,5, i = 6, i = 7, i = 8, respectively. The second equation describ-
ing the operation of MixColumns()

s′1,c = s0,c ⊕ ({02}• s1,c)⊕ ({03}• s2,c)⊕ s3,c

Partial mathematical modeling and analysis of the AES system 69

applied to a column indexed c = 0 can be written as follows:

qi ⇔ pi−8 ⊕ pi+1 ⊕
(

p(i+8)+1 ⊕ pi+8
)
⊕ pi+16

qi ⇔ pi−8 ⊕ pi+1 ⊕ p9 ⊕
(

p(i+8)+1 ⊕ p17 ⊕ pi+8
)
⊕ pi+16

qi ⇔ pi−8 ⊕ pi+1 ⊕
(

p(i+8)+1 ⊕ pi+8
)
⊕ pi+16

qi ⇔ pi−8 ⊕ pi+1 ⊕ p9 ⊕
(

p(i+8)+1 ⊕ p17 ⊕ pi+8
)
⊕ pi+16

qi ⇔ pi−8 ⊕ p9 ⊕ (p17 ⊕ pi+8)⊕ pi+16

for i = 9, . . . ,11, i = 12,13, i = 14, i = 15, i = 16.
Applying boolean to the third equation s′2,c = s0,c⊕s1,c⊕({02}• s2,c)⊕({03}• s3,c)

we get:

qi ⇔ pi−16 ⊕ pi−8 ⊕ pi+1 ⊕
(

p(i+8)+1 ⊕ pi+8
)

qi ⇔ pi−16 ⊕ pi−8 ⊕ pi+1 ⊕ p17 ⊕
(

p(i+8)+1 ⊕ p25 ⊕ pi+8
)

qi ⇔ pi−16 ⊕ pi−8 ⊕ pi+1 ⊕
(

p(i+8)+1 ⊕ pi+8
)

qi ⇔ pi−16 ⊕ pi−8 ⊕ pi+1 ⊕ p17 ⊕
(

p(i+8)+1 ⊕ p25 ⊕ pi+8
)

qi ⇔ pi−16 ⊕ pi−8 ⊕ p17 ⊕ (p25 ⊕ pi+8) .

for i = 17, . . . ,19, i = 20,21, i = 22, i = 23, i = 24, respectively.
The last equation describes the changes by the MixColumns() function in the last

line of the state:

s′3,c = ({03}• s0,c)⊕ s1,c ⊕ s2,c ⊕ ({02}• s3,c)

applied to the first column takes the form of a conjunction of the following formulas:

qi ⇔
(

p(i−24)+1 ⊕ pi−24
)
⊕ pi−16 ⊕ pi−8 ⊕ pi+1,

qi ⇔
(

p(i−24)+1 ⊕ p1 ⊕ pi−24
)
⊕ pi−16 ⊕ pi−8 ⊕ pi+1 ⊕ p25,

qi ⇔
(

p(i−24)+1 ⊕ pi−24
)
⊕ pi−16 ⊕ pi−8 ⊕ pi+1,

qi ⇔
(

p(i−24)+1 ⊕ p1 ⊕ pi−24
)
⊕ pi−16 ⊕ pi−8 ⊕ pi+1 ⊕ p25,

qi ⇔ (p1 ⊕ pi−24)⊕ pi−16 ⊕ pi−8 ⊕ p25.

for i = 25, . . . ,27, i = 28,29, i = 30, i = 31, i = 32, respectively.
Similarly, assuming that the state columns are denoted by c and the first column

is indexed 0, we can write a boolean formula encoding the MixColumns() operation
for the subsequent state columns.

3.3. Boolean encoding of AddRoundKey() transformations

The operation of the AddRoundKey() transformation is to XOR two strings of
bits. We will assume that (p1, p2, . . . , p128) and (v1,v2, . . . ,v128) will be the vectors
representing the input and pi ∈ {0.1}i vi ∈ {0.1}, for i = 1,2, . . . ,128 and let the

70 S. Stachowiak, M. Kurkowski

vector (q1,q2, . . . ,q128), where qi ∈ {0,1}, for i = 1,2, . . . ,128 will represent the
result of AddRoundKey(). Therefore, the boolean encoding of AddRoundKey()

can be represented as follows:

∧


q1 ⇔ p1 ⊕ v1
q2 ⇔ p2 ⊕ v2

. . .
q127 ⇔ p127 ⊕ v127
q128 ⇔ p128 ⊕ v128.

The transformations that are parts of AES encoded in this way allow us to create
a formula that encodes any number of rounds of the AES algorithm.

4. Translating formulas to CNF and SAT-based cryptanalysis

Below we present the conversion of sentence formulas describing the operation
of individual functions in the AES algorithm, obtained as a result of direct boolean
encoding to conjunctive normal form (CNF).

4.1. SubBytes() transformation

By using the SubBytes() encoding described in 3 for one byte of input data
represented by a vector (p1, . . . , p8) and one byte of output (q1, . . . ,q8), the following
formula can be written:

∧



(p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ p6 ∧ p7 ∧ p8)⇒ q1
(p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ p6 ∧ p7 ∧ p8)⇒ q2
(p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ p6 ∧ p7 ∧ p8)⇒ q3
(p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ p6 ∧ p7 ∧ p8)⇒ q4
(p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ p6 ∧ p7 ∧ p8)⇒ q5
(p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ p6 ∧ p7 ∧ p8)⇒ q6
(p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ p6 ∧ p7 ∧ p8)⇒ q7
(p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ p6 ∧ p7 ∧ p8)⇒ q8.

Applying the appropriate logical laws to the above formula, we transform it to CNF
and obtain the equivalent formula in the given form:

Partial mathematical modeling and analysis of the AES system 71

∧



(¬p1 ∨¬p2 ∨¬p3 ∨¬p4 ∨¬p5 ∨¬p6 ∨¬p7 ∨¬p8 ∨q1)

(¬p1 ∨¬p2 ∨¬p3 ∨¬p4 ∨¬p5 ∨¬p6 ∨¬p7 ∨¬p8 ∨q2)

(¬p1 ∨¬p2 ∨¬p3 ∨¬p4 ∨¬p5 ∨¬p6 ∨¬p7 ∨¬p8 ∨q3)

(¬p1 ∨¬p2 ∨¬p3 ∨¬p4 ∨¬p5 ∨¬p6 ∨¬p7 ∨¬p8 ∨q4)

(¬p1 ∨¬p2 ∨¬p3 ∨¬p4 ∨¬p5 ∨¬p6 ∨¬p7 ∨¬p8 ∨q5)

(¬p1 ∨¬p2 ∨¬p3 ∨¬p4 ∨¬p5 ∨¬p6 ∨¬p7 ∨¬p8 ∨q6)

(¬p1 ∨¬p2 ∨¬p3 ∨¬p4 ∨¬p5 ∨¬p6 ∨¬p7 ∨¬p8 ∨q7)

(¬p1 ∨¬p2 ∨¬p3 ∨¬p4 ∨¬p5 ∨¬p6 ∨¬p7 ∨¬p8 ∨q8).

To write a formula in the DIMACS format that encodes the transformation of one
byte by the SubBytes() transformation, 16 variables and 2048 clauses are needed.
And writing the formula encoding the transformation of a 16-byte state table by the
SubBytes() transformation requires writing over 30,000 clauses using 256 vari-
ables. [8] estimates that approximately 4800 clauses and 900 variables are needed
to encode the S-box used in the AES cipher.

This work has used the CryptLogVer tool to generate the formula.
By transforming the formula encoding the MixColumns() function to the con-

junctive normal form, we introduced additional variables representing the results of
partial operations included in the MixColumns() transformation.

For example, boolean encoding of the 02 • r operation, where r is the input byte
variable denoted by r = (r1, . . . , p8), where ui ∈ {0,1}, for i = 1,2, . . . ,8, and the
vector (p1, . . . , p8), where p8 ∈ {0,1}, for i = 1,2, . . . ,8 represents the output byte,
has the form:

∧



p1 ⇔ r2
p2 ⇔ r3
p3 ⇔ r4
p4 ⇔ r5 ⊕ r1
p5 ⇔ r6 ⊕ r1
p6 ⇔ r7
p7 ⇔ r8 ⊕ r1
p8 ⇔ r1.

Additionally, boolean encoding of the 03 • r operation, where similarly to the
above r is a vector representing the input data, and the sequence (t1, . . . , t8), where
ti ∈ {0,1}, for i = 1,2, . . . ,8 represents the output byte, has the form:

72 S. Stachowiak, M. Kurkowski

∧



t1 ⇔ r2 ⊕ r1
t2 ⇔ r3 ⊕ r2
t3 ⇔ r4 ⊕ r3
t4 ⇔ (r5 ⊕ r1)⊕ r4
t5 ⇔ (r6 ⊕ r1)⊕ r5
t6 ⇔ r7 ⊕ r6
t7 ⇔ (r8 ⊕ r1)⊕ r7
t8 ⇔ r1 ⊕ r8.

Hence, transforming one bit by MixColumns() can be written as the following
formula:

q1 ⇔ p1 ⊕ t1 ⊕w1 ⊕ z1.

Then the conjunctive normal form of the above formula is as follows:

∧



(¬p1 ∨¬t1 ∨¬w1 ∨¬z1 ∨¬q1)
(¬p1 ∨¬t1 ∨¬w1 ∨ z1 ∨q1)
(¬p1 ∨¬t1 ∨w1 ∨¬z1 ∨q1)
(¬p1 ∨¬t1 ∨w1 ∨ z1 ∨¬q1)
(¬p1 ∨ t1 ∨¬w1 ∨¬z1 ∨q1)
(¬p1 ∨ t1 ∨¬w1 ∨ z1 ∨¬q1)
(¬p1 ∨ t1 ∨w1 ∨¬z1 ∨¬q1)
(¬p1 ∨ t1 ∨w1 ∨ z1 ∨q1)
(p1 ∨¬t1 ∨¬w1 ∨¬z1 ∨q1)
(p1 ∨¬t1 ∨¬w1 ∨ z1 ∨¬q1)
(p1 ∨¬t1 ∨w1 ∨¬z1 ∨¬q1)
(p1 ∨¬t1 ∨w1 ∨ z1 ∨q1)
(p1 ∨ t1 ∨¬w1 ∨¬z1 ∨¬q1)
(p1 ∨ t1 ∨¬w1 ∨ z1 ∨q1)
(p1 ∨ t1 ∨w1 ∨¬z1 ∨q1)
(p1 ∨ t1 ∨w1 ∨ z1 ∨¬q1).

We can see that by converting the formula obtained above to the DIMACS format,
we get 16 clauses. Moving on and undergoing surgery MixColumns() 1 byte of data,
we get 128 clauses. Saving in the DIMACS format the encoding of the transformation
of the entire internal state by this function, by our method, requires 2048 clauses.

Next, we transformed the boolean formula encoding the function AddRoundKey()
to conjunctive normal form. Thus, by boolean encoding of individual transformations
occurring in AES, using the method described above, and their conversion to CNF,
we obtain a set of clauses corresponding to the operation of the entire AES algorithm.

We conducted tests that showed the correctness of this encoding. We tested the
encoding of both individual AES operations and the encoding of the entire AES

Partial mathematical modeling and analysis of the AES system 73

cipher. The input and output values for these tests were determined using the test
vectors given in [17].

4.2. SAT solvers

SAT solvers are programs designed to practically solve the SAT problem for
formulas containing a large number of variables as well as a large number of clauses.
The SAT solver searches for, if any, an evaluation of the variables that satisfiability
the boolean formula under examination. Many SAT solvers are based on an algorithm
developed by Davis, Putnam, Logemann and Loveland called the DPLL algorithm.
It is one of the most popular algorithms for automatic checking of formulas [19].
To be able to use it, the studied formula should be presented in the CNF.

4.3. Cryptanalysis procedure

Starting the cryptanalysis with the selected plaintext of the cipher, we first write
a boolean formula that encodes the operation of the entire cipher in the way, which
we presented in the Section 3 [13, 14, 20]. We convert the obtained formula to the
DIMACS format. We then generate two strings of bits representing the plaintext and
the key, respectively. We write them in the form of clauses in such a way that each
bit corresponds to one clause consisting of a single literal. The plaintext and key bits
represented in this way are added to the previously prepared formula. In the next step,
we look for an evaluation that meets the prepared formula.

For this, we use the SAT solver. We receive the evaluation of the propositional
variables that make up the ciphertext. Finally, using the formula encoding the opera-
tion of the cipher and a set of clauses describing the plaintext and the ciphertext,
we search for the value of key bits and thus perform a cryptanalytic attack.

5. Experimental results

With time, successive progress is made in AES cryptanalysis. The best results
until 2009, were reported by [21, 22], and it was a 7-round AES-128 attack. The first
was slightly faster than an exhaustive search, and the time complexity of the second
was 2120. Subsequent works [23, 24] published attacks against 10 rounds of AES-
192 and 10 rounds of AES-256 with 10, 12, and 14 rounds respectively. In 2009,
Biryukov and others in [25] presented a key-related attack against the full version
of AES-256 with a time complexity of 296 for one of 235 keys. They also described
practical attacks against AES-256 [26].

In addition, Biryukov and his team in [27] presented the first related key attack
against AES-256, which works for all keys, with a better time complexity of 299.5,
and the first attack of this kind against the full version of the AES-192 cipher.

In this part of the article, we present the obtained experimental results of the SAT
cryptanalysis of the AES cipher in the version with a 128-bit key. For our experi-

74 S. Stachowiak, M. Kurkowski

ments, the test platform was a laptop with a Hexa-core Intel Core i7-10750H proces-
sor working at a base frequency of 2.60 GHz with Hyper-V support. The computer
had a system with 32 GB of RAM and worked under Windows 10 Professional.
We used the built-in statistics for Linux to measure the time. Given the computa-
tional complexity of the SAT, we did not expect all test instances to be processed in
a reasonable amount of time.

For the research, we have developed a tool that generates a logical formula that
models the operation of subsequent transformations used in the AES algorithm.
Finally, we received a formula that models the operation of the entire AES cipher in
the 128-bit key version. The resulting formula is in DIMACS format. An undoubted
advantage of this solution is the lack of the need to perform additional conversions of
formulas and related activities to check the correctness of these transformations.

To carry out the cryptographic analysis with the selected plaintext of the AES
cipher in the 128-bit key version using the method that we presented, we used
SAT-solvers, which in recent years occupied leading positions, e.g. in the SAT Com-
petition 2020 competition, i.e. CaDiCal, Cryptominisat, Kissat and Plingeling [28].
In addition, we reused the stable SAT-solver which is Minisat, and the SAT-solver lin-
geling – a single-threaded version of Plingeling. First, we attempted to crack 1 round
of AES-128. We set the time limit at one week. None of the SAT solvers used at
that time found an evaluation that met the given formula, and thus did not find the
bits of the key. We changed the logical formula and added to it, in the appropriate
form, successively 64, 40, 32, 24, and finally 16 initial key bits. We set a time limit of
96 hours for this study. The results obtained by individual SAT-solvers are presented
in the Tables 1 and 2 (in the absence of a result after 24 hours of calculations, the
experiments were stopped, which was marked with ”–”).

Table 1. Results for SAT solvers on one round of AES with added initial key bits

Number of MiniSat CryptoMiniSat lingeling
added 2.2.1 5.8.0 bcp2020

key bits Time [s] Time [s] Time [s]
64 0.205 0.031 0.112
40 276 15.2 9.67
32 10 289 5514
24 – 29799 –
16 – 6484 332387

When we supplemented the formula with half of the key bits, all used SAT solvers
which quickly calculated the valuation of the variables that represent the missing key
bits. Similarly in the next trial, where we added the initial 32 bits of the key, all
SAT solvers used calculated the missing key bit evaluations. The next step was to
add 24 bits of the key. The time needed for individual SAT solvers to provide the
value of variables representing missing key bits increased significantly again, except
for CryptoMiniSat SAT-solver. In addition, two of the used SAT solvers: MiniSat

Partial mathematical modeling and analysis of the AES system 75

and lingeling failed to complete the calculations in the given time. Given the initial
16 bits of the SAT key, the solvers needed from about 18 hours – CryptoMiniSAT to
over 92 hours – lingeling to search for the remaining 112 bits. In addition, MiniSat,
Kissat, and Plingeling failed to complete the calculations within the time allowed.

Table 2. Results for SAT solvers on one round of AES with added initial key bits

Number of CaDiCal Kissat Plingeling
added 1.4.1/2021 2.0.0 bcp/2020

key bits Time [s] Time [s] Time [s]
64 0.127 0.136 0.093
40 10.5 13.1 24.6
32 189 81.8 467
24 1728 6929 6368
16 81780 – –

SAT-solver CryptoMiniSat was selected to perform further tests. The study was
conducted in two variants. In the first variant, as in the previous experiment, to the
boolean formula modeling the operation of the AES-128 cipher in the first round,
a fixed number of initial key bits was added, and in the second variant, the final key
bits. The time limit was set at 12 hours. In the first stage of the study, 32, 30, 28, and
26 initial or final key bits were added, respectively. The results of this stage of the
experiment are presented in the Table 3.

Table 3. The results of the CryptoMiniSat SAT-solver were obtained when trying to break one round of
AES Part. 1

Number of added key bits
32 30 28 26

Initial bits Time [s] 278 21.5 219 69.2
Final bits Time [s] 25.2 12.2 17 714

In the first three cases, the SAT-solver CryptoMiniSat calculated the missing lead-
ing key bits faster, and in the last attempt, it took less time to get the remaining 102
trailing key bits than the 102 trailing key bits.

Table 4. The results of the CryptoMiniSat SAT-solver were obtained when trying to break one round of
AES Part. 2

Number of added key bits
24 22 18 16

Initial bits Time [s] 28.9 – – 6564
Final bits Time [s] 75.6 448 – –

Moving on to the second stage of the study, 24, 22, 18, and 16, respectively,
the initial or final key bits were added. The results of this experiment are presented
in the Table 4. As we can see in the conducted experiment, the SAT-solver calculates
the remaining bits of the key faster with the initial bits added. Additionally, in neither

76 S. Stachowiak, M. Kurkowski

of the two variants of this study did CryptoMiniSat calculate the missing bits, and
in the last attempt, it took over 18 hours to get the final bits of the key. In the variant
with 16 trailing key bits added, the SAT-solver failed to provide the trailing key bits
within the time limit.

We also performed tests by adding a smaller and smaller number of initial (final)
key bits, but the SAT-solver CryptoMiniSat was unable to evaluate the remaining key
bits within 12 hours.

In the next study, an attempt was made to break one round of AES-128 by adding
key bits in such a way that 100, 102, 104, 106, 108, and 110 bits were removed from
the middle of the key bit sequence, leaving the AES-128 cipher in the first round
respectively 28, 26, 24, 22, 20, and 18 added bits. The time limit set for the calcu-
lations by the SAT-solver CryptoMiniSat was set to 12 hours. The obtained results
are presented in the Table 5. In the case of a one-round AES-128 attack with key bits
added as described above, it was successful even when only 18 key bits were added
– the SAT-solver successfully found the evaluation of the remaining key bits in the
given time. Continuing the test and adding fewer and fewer key bits (in DIMACS
format) in the formula encoding the AES-128 operation in the first round, Crypto-
MiniSat’s SAT-solver failed to calculate the remaining key bits within the time limit
of 12 hours.

Table 5. The results of the CryptoMiniSat SAT-solver were obtained when trying to break one round of
AES Part. 3

The number of middle key bits removed
100 102 104 106 108 110

Time [s] 437 135 13566 1774 322 9740

The conducted research shows that adding the initial 16 bits of the key to the
formula encoding the AES-128 action in the first round causes some SAT-solvers
selected for this task to calculate the remaining key bits in less than 12 hours. On the
other hand, adding 16 final or 8 initial and 8 final (version with 112 middle key bits
cut) key bits to this formula did not allow the SAT-solver CryptoMiniSat to find the
evaluation of the remaining key bits within the set time limit.

6. Conclusion

We developed a boolean encoding of the AES cipher and obtained a CNF fully
equivalent to the operation of AES, which we confirmed with tests. We transformed
the selected-plaintext cryptanalysis problem of the AES algorithm with a 128-bit key
into a SAT problem. Experiments have shown that the problem encoded in this way
can be solved using selected SAT solvers in a reasonable time in a version reduced to
one round with the addition of at least 16 key bits. In future work, we plan to reduce
the number of clauses in the CNF describing the operation of the AES cipher and
investigate the capabilities of SAT solvers for the newly formulated SAT problem.

Partial mathematical modeling and analysis of the AES system 77

References

[1] Cook, S.A. (1971). The complexity of theorem-proving procedures. Proceedings of the Third
Annual ACM Symposium on Theory of Computing - STOC -71.

[2] Cook, S., & Mitchell, D. (1997). Finding hard instances of the satisfiability problem: A survey.
Satisfiability Problem: Theory and Applications, 1-17.

[3] Steingartner, W., Polakova, A., Praznak, P., & Novitzka, V. (2015). Linear logic in computer
science. Journal of Applied Mathematics and Computational Mechanics, 14(1), 91-100.

[4] Steingartner, W., Radakovic, D., Valkosak, F., & Macko, P. (2016). Some properties of coal-
gebras and their role in computer science. Journal of Applied Mathematics and Computational
Mechanics, 15(4), 145-156.

[5] Andrzejczak, M., & Dudzic, W. (2019). SAT attacks on ARX ciphers with automated equations
generation. Infocommunications Journal, 11(4), 2-7.

[6] Dwivedi, A.D., Kloucek, M., Morawiecki, P., Nikolic, I., Pieprzyk, J., & Wójtowicz, S. (2017).
SAT-based cryptanalysis of authenticated ciphers from the caesar competition. Proceedings of
the 14th International Joint Conference on E-Business and Telecommunications.

[7] Dudzic, W., & Kanciak, K. (2020). Using SAT solvers to finding short cycles in cryptographic
algorithms. International Journal of Electronics and Telecommunications, 66(3), 443-448.

[8] Morawiecki, P., & Srebrny, M. (2013). A SAT-based preimage analysis of reduced Keccak hash
functions. Information Processing Letters, 113(10-11), 392-397.

[9] Lee, H., Kim, S., Kang, H., Hong, D., Sung, J., & Hong, S. (2016). Efficient differential trail
searching algorithm for ARX block ciphers. Journal of the Korea Institute of Information Secu-
rity and Cryptology, 26(6), 1421-1430.

[10] Sun, L., Wang, W., & Wang, M. (2021). Accelerating the search of differential and linear
characteristics with the SAT method. IACR Transactions on Symmetric Cryptology, 1, 269-315.

[11] Courtois, N.T., & Pieprzyk, J. (2002). Cryptanalysis of block ciphers with overdefined systems
of equations. Lecture Notes in Computer Science, 267-287.

[12] Gwynne, M. (2014). Attacking AES via Sat. Academia.edu. https://www.academia.edu/
2594954/Attacking AES via SAT

[13] Stachowiak, S., Kurkowski, M., & Soboń, A. (2021). SAT vs. substitution boxes of DES like
ciphers. 2021 IEEE 30th International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE).

[14] Stachowiak, S., Kurkowski, M., & Soboń, A. (2021). SAT-based cryptanalysis of Salsa20 cipher.
Progress in Image Processing, Pattern Recognition and Communication Systems, 252-266.

[15] Chowaniec, M., Kurkowski, M., & Mazur, M. (2018). New results in direct SAT-based crypt-
analysis of DES-like ciphers. In: Advances in Soft and Hard Computing, 282-294.

[16] Soboń, A., Kurkowski, M., & Stachowiak, S. (2019). Towards complete SAT-based cryptanalysis
of RC5 cipher. 2019 IEEE 15th International Scientific Conference on Informatics, 397-402.

[17] Dworkin, M.J., Barker, E.B., Nechvatal, J.R., Foti, J., Bassham, L.E., Roback, E., & Dray jr., J.F.
(2001). Advanced Encryption Standard (AES). NIST. https://www.nist.gov/publications/
advanced-encryption-standard-aes

[18] Ashokkumar, C., Giri, R.P., & Menezes, B. (2016). Highly efficient algorithms for AES key
retrieval in cache access attacks. 2016 IEEE European Symposium on Security and Privacy.

[19] Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem-proving.
Communications of the ACM, 5(7), 394-397.

[20] Soboń, A., Kurkowski, M., & Stachowiak, S. (2020). Complete SAT based cryptanalysis of RC5
cipher. Journal of Information and Organizational Sciences, 44(2), 365-382.

[21] Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., & Whiting, D. (2001).
Improved cryptanalysis of Rijndael. Fast Software Encryption, 213-230.

78 S. Stachowiak, M. Kurkowski

[22] Gilbert, H., & Minier, M. (2000). A Collision Attack on 7 Rounds of Rijndael. The Third
Advanced Encryption Standard Candidate Conference, 230-241.

[23] Biham, E., Dunkelman, O., & Keller, N. (2005). Related-key boomerang and rectangle attacks.
Lecture Notes in Computer Science, 507-525.

[24] Kim, J., Hong, S., & Preneel, B. (2007). Related-key rectangle attacks on reduced AES-192 and
AES-256. Fast Software Encryption, 225-241.

[25] Biryukov, A., Khovratovich, D., & Nikolic, I. (2009). Distinguisher and related-key attack on
the full AES-256. Advances in Cryptology – CRYPTO 2009, 231-249.

[26] Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., & Shamir, A. (2010). Key recovery
attacks of practical complexity on AES-256 variants with up to 10 rounds. Advances in Cryptol-
ogy – EUROCRYPT 2010, 299-319.

[27] Biryukov, A., & Khovratovich, D. (2009). Related-key cryptanalysis of the full AES-192 and
AES-256. Advances in Cryptology – ASIACRYPT 2009, 1-18.

[28] Committee, SAT Competition Organization (2022). The International SAT Competition Web
Page. SAT Competitions. http://satcompetition.org/

