
Journal of Applied Mathematics and Computational Mechanics 2024, 23(1), 7-18
www.amcm.pcz.pl p-ISSN 2299-9965
DOI: 10.17512/jamcm.2024.1.01 e-ISSN 2353-0588

ON THE STABILITY ANALYSIS FOR A SEMI-ANALYTICAL
SCHEME FOR SOLVING THE FRACTIONAL ORDER BLOOD

ETHANOL CONCENTRATION SYSTEM USING LVIM

Mohamed Adel1, Nasser H. Sweilam2, Mohamed M. Khader3,4

1 Department of Mathematics, Faculty of Science, Islamic University of Madinah
Medina, KSA

2 Department of Mathematics, Faculty of Science, Cairo University
Giza, Egypt

3 Department of Mathematics and Statistics, College of Science
Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, KSA

4 Department of Mathematics, Faculty of Science, Benha University
Benha, Egypt

adel@sci.cu.edu.eg, nsweilam@sci.cu.edu.eg, mmkhader@imamu.edu.sa

Received: 21 July 2023; Accepted: 18 November 2023

Abstract. The purpose of this article is to present the Laplace variational iteration method,
which combines the VIM with the Laplace transform approach (LVIM). This combination
will result in a better and more quickly convergent sequence since nonlinear fractional
differential equations (FDEs) cannot be solved using the Laplace transform. With the use
of the fixed point theory, the stability analysis is specifically discussed and examined.
The blood ethanol concentration system is solved numerically by using the suggested
scheme. This model can be represented by a system of FDEs. The investigation will employ
the Caputo-Fabrizio fractional derivative. To provide a more in-depth study of this model,
we have taken it in its fractional form so that we can more accurately follow the behavior of
the solution in the future and history based on the memory effect of fractional derivatives.
We determine the accuracy and efficiency of the provided process by evaluating the absolute
errors, and a comparison with the existing published work. The results show that the
approach is a useful tool for simulating this model.
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1. Introduction

Numerous authors have remained interested in fractional calculus during the past
three decades [1]. Researchers have found that creating novel fractional derivatives
with varied singular or non-singular kernels is essential to meet the demand for mod-
eling real-world problems in numerous fields including mechanics, biology, and engi-
neering [2], to name a few. Since most FDEs don’t have an exact solution, numerical
and approximation approaches must be applied, as stated in [3].
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Recently, Caputo and Fabrizio (CF) suggested a novel operator by substituting
the regular kernel for the singular kernel in the traditional Caputo derivative [4].
The exponential kernel, which is a non-singular kernel, is employed with the CF
operator. It can depict the complete impact of the memory in addition to having two
distinct representations for temporal and spatial elements [5]. The space-time frac-
tional diffusion equation has successfully used this novel operator, as shown in [6].
To get an accurate solution for the fractional models stated in CF-operator, there have
only been a small number of works done thus far because the CF-operator still new.
For more details on the definitions of fractional derivatives and their features, see the
citation provided in [7].

We know that the memory property of the fractional derivative means that we can
follow the behavior more broadly and accurately. Here, the blood ethanol concen-
tration system (BECS) will be studied and solved in its CF-fractional form. Please
see, for example, but not limited to [8] where the authors also considered this model
with different forms of the fractional derivative with singular kernel (Caputo) and
non-singular kernel (Atangana-Baleanu-Caputo) fractional derivatives. As in many
models, such as the basic processes of relaxation, diffusion, oscillations, wave prop-
agation, etc., we can also see that the BECS has been revisited by several authors by
introducing fractional-order derivatives in the governing ordinary differential equa-
tions (ODEs). This leads to super-slow or intermediate processes that, in mathemat-
ical physics, we may refer to as fractional phenomena. On the other side, we know
that such models rely on ODEs. Although these models have useful analytical prop-
erties when analyzed over a long period, they perform poorly on short-time scales.
One reason for this is that they are essentially ’memoryless’ which is, as we know,
the reservoir of that memory in the presence of the fractional derivative. Finally,
we can conclude that including memory effects in modeling the BECS helps us fol-
low its behavior more accurately and closer to reality, and then it can be controlled.
For more general and specialized notes related to the model, see also [9, 10].

We employ the VIM [11] approach with the Laplace transform method in the cur-
rent investigation. The approximate solutions of the fractional blood ethanol concen-
tration system is investigated next using the combination technique, and the Laplace
variational iteration [12]. The major benefit of this procedure is that it converges
more quickly than the current method does from similar literature [13]. In addition,
the LVIM is implemented to solve some problems, such as the non-linear fractional
Burger’s equation [14], and the Schrödinger equation [15].

2. Preliminaries and concepts

2.1. Some definitions of fractional calculus and Laplace transforms

Definition 1. The Caputo-Fabrizio fractional derivative c f Dν of order 0 ≤ ν ≤ 1 of
a function ϕ(t) ∈ H1(a,b), is defined by [16]:
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c f Dν
ϕ(t) =

1
1−ν

∫ t

a
ϕ

′
(τ)e

−ν(t−τ)
1−ν dτ.

Definition 2. Let ϕ(t) be a function, then its Laplace transform is defined as:

Ł{φ(t)}= Φ(s) =
∫

∞

0
e−st

φ(t)dt, (1)

and the Laplace transform of ϕ(t) in the Caputo-Fabrizio sense is given by [5]:

Ł{c f Dν+m
φ(t)}= sm+1Ł{φ(t)}− smφ(0)− sm−1φ ′(0)− ...−φ (m)(0)

s+ν(1− s)
. (2)

For m = 0, we have:

Ł{c f Dν
φ(t)}= sŁ{φ(t)}−φ(0)

s+ν(1− s)
. (3)

2.2. Some stability concepts

Many stability concepts have been developed in the last few decades, among
which are Lyapunov stability [17], exponential stability [18], and so on. Then, we use
the Banach contraction principle [19] to check the stability of the proposed LVIM.
For this, let us recall some main definitions from the fixed point theory.
Definition 3. Let (Ω, |.|) be a metric space. A mapping A : Ω → Ω is called
a contraction mapping, if for all ϕ1, ϕ2 ∈ Ω, and 0 < γ < 1 we have:

|Aϕ1 −Aϕ2| ≤ γ |ϕ1 −ϕ2|. (4)

This means that every pair of points ϕ1, ϕ2 ∈ Ω has images that are closer than
the points ϕ1, ϕ2 or, i.e.

|Aϕ1 −Aϕ2|
|ϕ1 −ϕ2|

,

does not exceed γ [19].
Further, let us recall Picard’s existence and uniqueness theorem for differential

equations. So we consider the following first-order initial value problem:

u̇(t) = A(t;u), u(t0) = u0, (5)

with t0 and u0 two given real numbers. Let A be a continuous mapping on the
rectangle,

R̄ = {(t;u) : |t − t0| ≤ a, |u−u0| ≤ b}.

Thus, A is bounded on R̄. Then, for all (t;u) ∈ R̄, we can write |A(t;u)| ≤ c.
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Assume that about its second argument, A meets the Lipschitz condition on R̄.
Consequently, a Lipschitz constant exists γ such that, for all (t;u),(t;v) ∈ R̄,

|A(t;u)−A(t;v)| ≤ γ|u− v|. (6)

Then the initial value problem (5) has a unique solution in the interval (t0−σ , t0+σ)

under these circumstances, where σ < {a,
b
c
,
1
γ
} (see [19]).

2.3. The proposed fractional blood ethanol concentration system

Calculating the amounts of alcohol in a person’s blood Ψ(t) and stomach Φ(t)
is the main goal of this subsection. The primary source of the actual data used in
the current research study was an experimental study conducted in [9]. Based on the
fractional derivative kinetic reaction (0 < ν ≤ 1), the model takes the following form:

Dν
Φ(t) =−β

ν
Φ(t), (7)

Dν
Ψ(t) = β

ν
Φ(t)−µ

ν
Ψ(t), (8)

Φ(0) = Φ̄0, Ψ(0) = 0, (9)

where Φ(t) is the concentration of alcohol in the stomach [mg/L], Ψ(t) is the concen-
tration of alcohol in the blood [mg/L], β is the rate law constant 1 [min−1], µ is
the rate law constant 2 [min−1] at any time t [min], and Φ0 is the initial alcohol
concentration in the stomach [mg/L] [9].
The exact solution of this system is defined as [10]:

Φ(t) = Φ0 Eν(−β
νtν),

Ψ(t) = Φ0 β
ν

∞

∑
r=0

∞

∑
q=0

(−β ν)r(−µ ν)q

Γ(r ν +qν +ν +1)
tr ν+qν+ν .

(10)

With this model (7)-(9) in its fractional form, we can more precisely characterize
the effect of the solution in the future and in history based on the memory effect of
fractional derivatives. As it is also known, although the mathematical models with
integer derivatives play an important role and have significance in understanding the
dynamics of such systems, they have some limitations, such as these systems do not
have memory or non-local effects; therefore, these models in the usual form are some-
times inappropriate, and it is necessary to convert several models into FDEs form.
As a general case, FDEs are frequently used in the study of anomalous phenomena
in nature and in the theory of complex systems as well as when taking into account
the properties of the curve over a large extent [9, 10].
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3. Basis of the Laplace VIM

This section is focused on presenting the basis of the Laplace VIM. For this, recall
the general FDE:

Dνu(t)+L(u(t))+N(u(t)) = g(t), subject to u(0) = u0, (11)

where L(u(t)), N(u(t)), and g(t) are linear, nonlinear and known functions, respec-
tively. Additionally, we consider Dν in the CF-sense.

Applying the VIM in Equation (11) we get:

un+1(t) = un(t)+λ [Dνu(t)+L(u(t))+N(u(t))−g(t)].

Additionally, applying the Laplace transform, the variable t becomes a new one s,
such that:

un+1(s) = un(s)+λŁ[Dνun(t)+L(ũn(t))+N(ũn(t))−g(t)], (12)

where ũn(t) etc. are restricted values, which means δ ũn(t) = 0. Using relation Equa-
tion (3) we get:

Ł{Dνun(t)}=
sun(s)−un(0)

s+ν(1− s)
, Ł{δ Dνun(t)}=

sδ un(s)−δ un(0)
s+ν(1− s)

,

where δ un(0) = 0. Then, we obtain:

Ł{δ Dνun(t)}=
sδ un(s)

s+ν(1− s)
.

From the optimization conditions,

δ ũn+1(s)
δ ũn(s)

= 0, δ ũn = 0,

we get

1+λ

[
sδ ũn(s)

s+ν(1− s)δ ũn(s)

]
= 0.

The above equation gives λ =−s+ν(1− s)
s

.

Replacing Equation (12), we obtain:

un+1(s) = un(s)−
(s+ν(1− s)

s

)
Ł[Dνun(t)+L(un(t))+N(un(t))−g(t)].

Using the inverse Laplace transform we get:

un+1(t) = un(t)−Ł−1
[(s+ν(1− s)

s

)
Ł[Dνun +L(un)+N(un)−g(t)]

]
. (13)
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Replacing n = 0,1,2, ..., we get the following successive approximations, u1(t),
u2(t), ..., which converge to the exact solution, i.e.,

u(t) = lim
n→∞

un(t).

4. Stability analysis of the LVIM scheme

Theorem 1. The Laplace variational iteration scheme (13) is unconditionally stable.

PROOF Considering the above discussion in Section 2, and the scheme (13) to check
the stability of LVIM as follows:

un+1(t) = A(un+1) = un(t)−Ł−1
[(s+ν(1− s)

s

)
Ł[Dνun(t)+L(un(t))+N(un(t))−g(t)]

]
.

Then we have:

|A(un+1)−A(um+1)| ≤ |un −um|−Ł−1
[(s+ν(1− s)

s

)
Ł
[
Dν(un −um)

+L(un −um)+N(un −um)
]]
,

which implies,

|A(un+1)−A(um+1)|
|un −um|

≤1−Ł−1
[(s+ν(1− s)

s

)
Ł
[
Dν(un −um)

+L(|un −um|)+N(|(un −um)|)
]]

= γ.

Then, we obtain:

|A(un+1)−A(um+1)|
|un −um|

≤ γ,

which means |A(un+1)− A(um+1)| ≤ γ |un − um|. Then, the proposed scheme is
unconditionally stable in view of Equation (6). ■

5. Implementation of Laplace VIM

How the LVIM works is explained in [20], and how different types of differential
equations may be solved with it. It was demonstrated in the source that VIM has been
applied in a good form for solving FDEs. Following the discussion in [21], in this
section we expand the application of the LVIM to solve the BECS [21]:

The correction functional for the system (7)-(8) can be created as follows:

Φm+1(s) = Φm(s)+λ1Ł
[(

Dν
Φ̃m(t)+β

ν
Φ̃m(t)

)]
, (14)

Ψm+1(s) = Ψm(s)+λ2Ł
[(

Dν
Ψm(t)−β

ν
Φ̃m(t)+µ

ν
Ψ̃m(t)

)]
, (15)
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where λk (k = 1,2) are the general Lagrange multipliers, which can be identified by
variational theory [22]. The optimality conditions give the following:

δ Φ̃m+1(s)
δ Φ̃m(s)

= 0,
δ Ψ̃m+1(s)
δ Ψ̃m(s)

= 0, δ Φ̃n = 0, δ Ψ̃n = 0,

where Φ̃m and Ψ̃m are considered as restricted variations and the above equations
give:

λ1 = λ2 =−s+ν(1− s)
s

.

Replacing λ1, λ2 into the functional equations (14)-(15) and using inverse Laplace
transform to obtain the following iteration formula:

Φm+1(t) = Φm(t)−Ł−1
[(

s+ν(1− s)
s

)
Ł
[
Dν

Φm(t)+β
ν

Φm(t)
]]

, (16)

Ψm+1(t) = Ψm(t)−Ł−1
[(s+ν(1− s)

s

)
Ł
[
Dν

Ψm −β
ν
Φm +µ

ν
Ψm

]]
. (17)

If the initial conditions of the system are satisfied, the initial approximations Φ0(t)
and Ψ0(t) can be arbitrarily chosen. Last but not least, we approximate Φ(t), and
Ψ(t) by the m-th terms, Φm(t), and Ψm(t), respectively:

Φ(t) = lim
m→∞

Φm(t), Ψ(t) = lim
m→∞

Ψm(t). (18)

6. Numerical applications

In this section, we present the approximate solution of the BECS. Considering the
LVIM formula (16)-(17) with various values of ν , m with β = 0.02873, µ = 0.08442,
and starting conditions Φ0 = 4, Ψ0 = 0 through Figures 1-4, we are now prepared to
obtain an approximation of the solution to the model under study.

Fig. 1. Comparison the approximate and exact solutions with ν = 0.97, and m = 4
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Fig. 2. The absolute error with ν = 0.95, and m = 5

Fig. 3. Behavior of the approximate and exact solutions with distinct values
of β and µ at m = 5,Φ0 = 4

By using the LVIM formula (16)-(17), if we start with Φ0(t) = 4, and Ψ0(t) = 0,
we can obtain:

Φ1(t) = 4− 0.429 tν

Γ(1+ν)
, Ψ1(t) =

0.429 tν

Γ(1+ν)
,

Φ2(t) = 4− 0.429 tν

Γ(1+ν)
+

0.046 t2ν

Γ(1+2ν)
, Ψ2(t) =

0.429 tν

Γ(1+ν)
− 0.136 t2ν

Γ(1+2ν)
,
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Φ3(t) = 4− 0.429 tν

Γ(1+ν)
+

0.046 t2ν

Γ(1+2ν)
− 0.002 t3ν

Γ(1+3ν)
,

Ψ3(t) =
0.429 tν

Γ(1+ν)
− 0.136 t2ν

Γ(1+2ν)
+

0.012 t3ν

Γ(1+3ν)
,

and so on; similarly the rest of the components can be obtained. Here, in our
calculations, we approximated Φ(t), and Ψ(t), by Φ(t) ∼= Φ6(t), and Ψ(t) ∼= Ψ6(t),
respectively.

Fig. 4. Behavior of the approximate and exact solutions with distinct values of ν at m = 5

Figure 1 gives a comparison between the numerical and exact solutions at
ν = 0.97 with m = 4, and Figure 2 shows the absolute error at ν = 0.95 with
m = 5. The behavior of the numerical (a and c), and exact (b and d) solutions with
ν = (0.92, 0.82, 0.72, 0.62) at m = 5 is shown in Figure 3. Finally, the behavior of
the numerical (a and c), and exact solutions (b and d) with β = 0.15,0.25,0.35,0.45,
and µ = 0.25,0.35, 0.45,0.55 with m = 5 is shown in Figure 4.

Based on the stability analysis which is presented in Section 4, the proposed LVIM
scheme is unconditionally stable. However, we discussed and were satisfied with
the stability of the method through the numerically simulated solutions presented.
We evaluated the absolute error (AE) of the solution with different values of the
order of the fractional derivative ν , and the order of approximation, m (see Fig. 2),
and we also considered the parameters β , and µ also with various values to see its



16 M. Adel, N.H. Sweilam, M.M. Khader

effect on the behavior and stability of the solution (see Fig. 3). Additionally, from
Figure 4, we can see the effect of the order of fractional derivatives is consistent with
the natural behavior of the model. Furthermore, to provide further confirmation, we
compared our obtained results with those obtained by using the Chebyshev spectral
collocation method for the same model but with the Atangana-Baleanu-Caputo frac-
tional derivative with non-singular kernel [8], by computing the relative error (RE)
through Table 1 at ν = 0.9, Φ0 = 6 and Ψ0 = 0. As a result, the behavior of the
numerical solution is heavily reliant on ν , β , and µ , proving that the recommended
numerical approach can successfully solve the given system in the situation of this
type of fractional derivatives. In addition, the given comparison demonstrates how
thorough the approach suggested in this article is.

Blood alcohol concentration is a commonly known and widely used measure of
the state of intoxication a person may be in, and this measure is used for legal or
medical purposes. BAC is expressed as a percentage of alcohol in the blood in units
of mass of alcohol per unit of blood density or mass of alcohol per mass of blood, and
this varies from one country to another. For example, in North America, the alcohol
concentration is expressed as 0.10 (0.10% or one-tenth of a percent) meaning there
are 0.10 grams of alcohol per deciliter of blood [23].

The range of alcohol concentration in the blood is (0, 0.5). For example, if it is in
the range (0.20, 0.29), this leads to coma, inability to understand, weak sensations,
and the possibility of a loss of consciousness. But if it exceeds 0.5, it causes a high
risk of poisoning, including the possibility of death. As is clear from Figures 1, 3, and
4, the concentration of alcohol in the blood is in the safe range, and this is considered
another criterion to measure the efficiency and accuracy of the proposed method and
to achieve the stability and convergence in the resulting solutions.

Table 1. Comparison of the relative error for numerical solutions by two different methods

RE of method [8] RE of present method
t Φ(t) Ψ(t) Φ(t) Ψ(t)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.159753E-04
6.852320E-05
5.852014E-05
3.132145E-05
3.852014E-04
7.952147E-05
1.852140E-05
8.654123E-05
0.753654E-05
1.852014E-05
3.951023E-06

3.456123E-06
3.025874E-06
2.652413E-05
3.980021E-06
2.012365E-06
0.014785E-06
2.963258E-05
2.012345E-05
1.150210E-06
0.321470E-05
3.852140E-05

5.741025E-07
1.021345E-07
2.654123E-06
5.321412E-07
3.632584E-07
3.321004E-07
0.954127E-06
4.321456E-06
3.021456E-07
2.123456E-06
2.951423E-07

2.321045E-08
3.123456E-08
5.963258E-07
8.956542E-08
5.123054E-07
3.696325E-09
1.321456E-07
3.012547E-07
3.110253E-07
2.524142E-07
3.321456E-07

7. Conclusions

The Laplace VIM is a potent technique and semi-analytical approach that can deal
with FDEs that are linear or nonlinear. We implemented this procedure to numerically
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solve the fractional blood ethanol concentration system. The suggested scheme is
a more dependable method that converges more quickly than those found in the liter-
ature. The findings demonstrate that the technique used is efficient and cost-effective
for obtaining the rough solutions of the suggested model. By including new words
drawn from the solution’s constituent parts, we can also regulate and reduce the
absolute error. To demonstrate the viability of the suggested method, approximate
solutions with various values of ν , m, and the AE are computed. Additionally, we
demonstrate a connection between the approximations of the solution and the iter-
ations of the series of successive approximations employed in the proof of a fixed
point. The key benefit is that the suggested method simplifies the computational pro-
cedures and is effective for nonlinear dynamical systems analysis. Using real data, it
has been demonstrated that the CF-fractional operator can estimate the concentration
of alcohol in human blood much more accurately than the integer order version of
the model. It has also been observed that this fractional operator performs equally
well as that of its integer order model. We intend to deal with these models in the
future, but on a larger scale, by generalizing this research to include a modified pro-
posed method or additional types of fractional derivatives. The Mathematica software
program is used to perform numerical simulation operations.
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