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Abstract. Diabetes mellitus is one of the most critical diseases, affecting millions of people
around the world. This work deals with the fractional optimal control of the dynamics of the
population model on diabetes. This framework is based on the fractional order differential
problems that describe the population before and after diabetes involving some health prob-
lems. We consider the Caputo derivatives for the study of the proposed model. The maxi-
mum principle of Pontryagin is utilized to derive the necessary conditions for the optimality
of a dynamical system. Using a forward-backward sweep approach with the generalized
Euler method accomplishes numerical solutions of formulated issues.
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1. Introduction

Traditional derivatives capture instantaneous rates of change, whereas fractional
derivatives, like the Caputo derivative, incorporate memory effects. Fractional deriva-
tives, particularly the Caputo derivative, naturally handle such non-local effects, mak-
ing them more suitable for modeling systems with long-term memory or distributed
effects [1]. Diabetes has become an epidemic and poses a great threat to human health
throughout the globe. Along with the impact that diabetes has on human health,
its huge and growing socio-economic burden affecting individuals, families and
the whole of society should be carefully monitored and investigated. Diabetes is
an illness that happens when your blood glucose level is uncommonly high [2, 3].
In the context of diabetic populations, where the disease progression often involves
memory-like effects due to the accumulation of damage over time, fractional deriva-
tives can better capture these dynamics and diabetic populations often exhibit non-
local effects as well, where the current state of the system depends on past states at
distant times. There are different other causes of diabetes, such as genetic mutations,
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damage to the pancreas, unbalanced hormones, etc. Approximately 1.4 million new
cases of diabetes were detected in 2019 [4]. More than 25 percent of them had no
idea that they had the illness. Hyperglycemia causes problems such as dental disease,
eye difficulties, foot problems, heart disease, renal disease, etc. Everyone can make
efforts to reduce their risk of getting certain diabetes-related health issues. Numerous
authors have thought about modelling diabetes mellitus mathematically using frac-
tional differential equations with non-integer and integer derivatives [5–7]. Fractal
calculus is a straightforward, constructive, and algorithmic way to describing natural
phenomena that cannot be achieved using smooth differentiable structures and stan-
dard modeling tools such as differential equations [8]. Fractional calculus, often re-
ferred to as the calculus of non-integer order integration and differentiation, general-
izes the standard differential calculus by extending it to be defined and valid for any
real or complex orders. Such a powerful scientific tool had been used within the area
of pure mathematics for some time until the researchers witnessed its unique perfor-
mance, not only in describing, but also for anticipating various natural and artifi-
cial phenomena [9–11]. As a generalization of integer-order (classical) differentiation
and integration operators, fractional-order operators provide some unique properties
for describing non-locality that comes naturally in the dynamics of such complex
phenomena. It becomes the main reason that non-integer order calculus is applied
tremendously in various areas of sciences and engineering in recent years [12–14].
A wide variety of different mathematical modeling has been constructed to analyze,
comprehend and simulate the glucose and insulin dynamics that lead to diabetes. Since
the late 1950s, public health professionals have focused on control and elimination
of infectious disease organs. Bolie (1961) was a forerunner in this sector [15] where
he had developed a basic linear model for glucose and insulin using ordinary differen-
tial equations. The International Diabetes Federation (IDF) claims that there is a ris-
ing diabetes epidemic that could have catastrophic effects on the planet. Currently,
10.5 % of adults worldwide have diabetes. Jajarmi et al. [16] employed a numerical
strategy for the study of fractional modeling and optimal control of diabetes.

The critical characteristic of fractional order derivatives, known as the memory
effect, fractional calculus theory and application, have been extensively utilized to
depict dynamical processes in domains of science, engineering, and other fields
[17–19]. Agrawal introduced Riemann-Liouville fractional derivative-driven general
optimal control problems [20]. The same author developed a reliable numerical frame-
work for the mathematical model and presented related optimal control problems
using Caputo derivatives in another study [21]. Numerous scholars have created and
studied optimum control problems, where controlled dynamic problems are char-
acterized by R-L derivatives [22–24]. In recent years, authors [25, 26] developed
a basic linear model for glucose and insulin using ordinary differential equations.
For an optimal control problem with both first-order and non-integer derivatives in
the state model, necessary optimality requirements have been derived [27].

The main objective of this research is to investigate fractional mathematical model
involving the population evolving from pre-diabetes to diabetes with and without
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complications by applying fractional optimal control strategies. A new fractional
model for diabetes involving the Caputo-derivative is proposed and studied within
the non-integer order calculus. The new fractional model has provided better results
in terms of simulation and consequently achieved the objective of modelling in com-
parison to the integer order model. The results are significant in terms of better under-
standing of disease progression and advantage is gained for the better comprehension
of diabetes disease that cannot be achieved by the use of classical approach.

We summarize this study as follows: We define some basic concepts of fractional
theory in Section 2. In Section 3, mathematical formulation of the fractional opti-
mal control problem is considered. In Section 4, formulation of a controlled diabetic
model is considered, and a necessary condition for optimality of model problem is
derived. In Section 5, we present the steps of Forward backward sweep method to
obtain the optimal control approximation. Section 6 presents the solution of the prob-
lem and experimentation of the results in the form of simulation. Section 7 deals with
the concluding remarks.

2. Preliminary concept

This segment provides a quick overview of the fractional optimal control model’s
mathematical formulation. The Riemann-Liouville derivative and Caputo derivative
are two fractional derivatives that are used in engineering and mathematical modell-
ing the most frequently.

Definition 1. The left R-L fractional derivative is given as [25]

L
aDα

ς f (x) =
1

Γ(m−α)

( d
dx

)m ∫ x

a
f (t)(x− t)(m−1−α)dt,

where m−1 < α < m. 2

Definition 2. The right R-L fractional derivative is given as [25]

R
a Dα

x f (x) =− 1
Γ(m−α)

( d
dx

)m ∫ x

a
(x− t)(m−1−α) f (t)dt.

where order α fulfills m−1 ≤ α < m where Γ denotes Euler’s Gamma function. 2

Definition 3. The left Caputo fractional derivative is termed as [25, 26]

C
a Dα

x g(x) =
1

Γ(m−α)

∫ x

a
g(τ)(x− τ)(m−1−α)

( d
dx

)m
dτ.

Definition 4. The right Caputo fractional derivative is termed as [25, 26]

C
x Dα

b g(y) =− 1
Γ(m−α)

∫ b

x
g(τ)(x− τ)(m−1−α)

( d
dx

)m
dτ.

Where α is the order of the Caputo derivative. 2
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Definition 5. The Atangana-Baleanu-Caputo derivative and integral of z(v, t) of order
ρ are defined as [26]. For z ∈H1(0,T ) and 0 < ρ < 1,

ABCDρz(v, t) :=
P(ρ)
1−ρ

∫ t

0
Eρ

[
− ρ

1−ρ
(t −ξ )ρ

]
z(v,ξ )dξ ,

ABCIρz(v, t) :=
1−ρ

P(ρ)
z(v, t)+

ρ

P(ρ)Γ(ρ)

∫ t

0
(t −ξ )ρ−1z(v,ξ )dξ ,

where Eρ is the Mittag-Leffler function and P(ρ) with P(ρ)|
ρ=0,1 = 1 represents

the normalization function. 2

3. Fractional optimal control formulation

Optimal control formulation using Caputo fractional derivatives was carried out
by Agrawal [28]. The main goal is to develop an optimal control u∗, which reduces
the objective functional which involves:

J(u) =
∫ 1

0
F(x,u, t)dt. (1)

Considering the fractional dynamics control

C
0 Dα

t x(t) =W (x,u, t), (2)

and the initial condition is

x(0) = x0, (3)

where α is the fractal dimension [29], and x(t) is state variable, F(x,u, t) and W (x,u, t)
represent the arbitrary functions. By combining the Lagrange multiplier approach, we
derive at the essential conditions for a fractional order controlled problem. Necessary
conditions are given as,

C
0 Dα

t x(t) =W (x,u, t), (4)

C
t Dα

1 λ =−∂F
∂x

−λ
∂W
∂x

, (5)

∂F
∂x

+λ
∂W
∂x

= 0, (6)

with

x(0) = x0 and λ (1) = 0, (7)

where λ is co-state variable referred to as the Lagrange multiplier.
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4. Controlled diabetics model with fractional derivatives

In this part, we discuss and obtain the necessary conditions of the fractional opti-
mal control problem. Finding an ideal control that minimizes the number of diabetic
patients with and without complications that is, finding an ideal control u∗ that mini-
mizes objective functional is the primary objective:

J(u) =
∫ 1

0
F(X ,u, t)dt. (8)

Considering the fractional dynamics control

C
0 Dα

t X(t) =W (X ,u, t), (9)

and the initial condition is

X(0) = X0, (10)

where

X(t) = (E,D,C)T ,

X(0) =
(

E(0),D(0),C(0)
)T

,

F(X ,u, t) = D(t)+C(t)+Au2(t),

C
0 Dα

t E(t) = I − [µ +(β3 +β1)(1−u))]E(t), (11)

C
0 Dα

t D(t) = β1E(t)(1−u)−D(t)(µ +β2(1−u))+C(t)γ, (12)

C
0 Dα

t C(t) = β3(1−u)E(t)+β2(1−u)D(t)−C(t)(δ +µ +ν + γ). (13)

Where X(t) represents a state vector and u(t) represents a control variable. Initial
conditions are E(0) = E0,D(0) = D0 and C(0) = C0, where parameter A repre-
sents the weight on the benefits and cost (a balance the size of the terms) at α = 1,
the proposed and evaluated diabetic controlled dynamical model becomes a classical
optimal control problem for uncontrolled diabetes models with and without compli-
cations. Also, keep in mind that dynamic constraint equations with initial condition
stated above becomes a diabetes disease model when the control functions are set
to 0. It is important to point out that there are thorough justifications in the literature
for the formulation of essential criteria for optimality of various fractional dynamical
systems [30]

C
0 Dα

t X(t) =W (x,u, t), (14)
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Table 1. Parameters of diabetics

Parameters Characterization
E(t) Represents the stage before diabetics of a patient
D(t) Represents the diabetics without health problems
C(t) Represents the diabetics with health problems

u(t)
The control variable represents the promotion of
physical activity and a healthy diet

Table 2. Description of model parameters

Parameters Definition
I(t) Represents the ration before diabetes
µ Represents normal death ratio

β3
Represents probability of evolving diabetes at stage
of complication

β2
Represents probability of diabetic person evolving
a complications

β1 Represents probability of developing diabetes
γ Represents the ratio rate at the point of health issue
δ Represents the mortality rate due to complications

ν
Represents the ration of a patient at the point of
disabled

C
t Dα

b λ (t) =
∂F
∂X

+λ
T ∂W

∂X
, (15)

∂F
∂U

+λ
T ∂W

∂U
= 0, (16)

X(0) = X0 and λ (b) = 0.

here λ (t)= (λ1,λ2,λ3)T denotes a variable. In this study, we show that the necessary
conditions in Eqs. (14)-(16) are derived on the concepts of the authors in [31, 32].
We use compact form of previously given conditions to produce optimality system
for fractional optimal control diabetes model.

0
CDα

t E(t) = I − [µ +(β3 +β1)(1−u))]E(t), (17)

0
CDα

t D(t) = β1E(t)(1−u)−D(t)(µ +β2(1−u))+C(t)γ, (18)

0
CDα

t C(t) = β3(1−u)E(t)+β2(1−u)D(t)−C(t)(δ +µ +ν + γ), (19)

C
t Dα

b λ1 = (λ1 −λ2)(1−u∗)β1 +(λ1 −λ3)(1−u∗)β3 +µλ1, (20)
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C
t Dα

b λ2 =−1+β2(1−u∗)(λ2 −λ3)+µλ2, (21)

C
t Dα

b λ3 =−1+(λ3 −λ2)γ +λ3(µ +ν +δ ), (22)

Furthermore, optimal control is termed as

u∗ =
1

2A
[β1E(λ2 −λ1)+β3E(λ3 −λ1)+β2D(λ3 −λ2)] (23)

E(0) = E0,D(0) = D0 and C(0) =C0 λ1(t f ) = 0,λ2(t f ) = 0,λ3(t f ) = 0

5. Forward backward sweep method

The method to solve the optimality system comprising equation (17) to equation
(23) is the Forward Backward Sweep Method (FBSM). The name of the method
suggests how an algorithm solves state equations forward in time and adjoint equation
backward in time. A rough outline of the Algorithm is given below:
Step 1: Making an initial guess for the control function (23).
Step 2: Using the initial condition of the state equation and initial guess for the
control, the state equations (17)-(19) are solved forward in time.
Step 3: Using the transversality condition and values for control and state equations,
solve the adjoint equations (20)-(22) backward in time.
Step 4: Update u by entering the new value of state equation and adjoint equations.
Step 5: Check convergence. If the values of variables in this iteration and the last
iteration are negligibly close, output the current values as solutions. If the values are
not close, return to step 2. For Steps 2 and 3, the generalized Euler method is used.
Using a step size h and ODE x(t) = f (t,x(t)), the approximation of x(t + h) given
x(t) is

x(t +h)≈ x(t)+
hα

Γ(α +1)
f (t,x(t)), 0 < α < 1 (24)

For the execution of step-5, the sufficient requirement is ∥ x − oldx ∥=
N+1

∑
i−1

to be

small, where N + 1 is the length of vector. Further, the relative error, for the state
vector, x, is given below. Note that the k represents the iteration step, not the k-th
element of x.

∥ x(k)− x(k+1) ∥
∥ x(k) ∥

, (25)

where δ is the accepted tolerance. The relative error is then solved so that there
is no division because it is possible that ∥ x(k) ∥. When this is done, the relative
error becomes ∥ x(k) ∥ − ∥ x(k)− x(k+1) ∥ ≥ 0. When this is true for all three vectors
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being tested, the algorithm stops and the current control is the optimal control
approximation.

6. Numerical solution

In this segment, we discuss on our obtained results so that we solve the optimal-
ity system of a biological model and use a FBSM based on the generalized Euler
method. The Forward-backward approach using generalized Euler method is used in
this work to numerically compute the optimality system’s solutions. One of numer-
ical approaches for fractional order models is the generalised euler method, which
has recently been used in a TB model along with the forward-backward algorithm.
The numerical simulations are performed using the initial conditions and model
parameter values listed below: E(0) = 6660000, D(0) = 10200000, C(0) = 5500000,
β3 = 0.5, ν = 0.05, β1 = 0.5, β2 = 0.1, I = 2000000, γ = 0.08, δ = 0.05, µ = 0.02,
A = 3550000, h = 0.01, T = nh = 10R years. It is clear from the plots generated
that the number of pre diabetics and the population without complications is in-
creasing, and there is a significant reduction in the population with complications of
non-integer orders with time-dependent controls (when α = 0.87,0.88,0.89,0.90,1).
It can be seen by the graphs that the number of pre-diabetics are increasing by apply-
ing control. Similarly, the ratio of people without complications and population with
complications is decreasing by applying the optimal control technique. Figure 1a
shows the dynamics of prediabetic population with the inclusion of zero versus non
zero control variable. Figure 1b represents the dynamics of the diabetic population
having no complications arising from disease with the inclusion of a zero versus non
zero control variable. Figure 2a demonstrates the dynamics of a diabetic population
with complications arising from disease with the inclusion of the zero versus non zero
control variable. Figure 2b reveals the dynamics of the prediabetic population using
fractional optimal control with different values of α . Figure 3a shows the dynamics
of the diabetic population having complications using fractional optimal control with
different values of α . Figure 3b demonstrates the number of diabetics with complica-
tions of fractional optimal control with different values of α and Figure 4a shows the
comparison of pre-diabetics with different values of α without control. We showed
the comparison of diabetics without complications with different values of α with-
out control in Figure 4b, whereas the comparison of diabetics with complications
with different values of α without control in Figure 5. The accuracy of a fractional
derivative model compared to an integer order derivative model in predicting the
dynamics of a pre-diabetic population can be observed from the simulation put into
Figure 1. The graphs of the pre-diabetic population with fractional order derivative is
showing the trend of population in more ascending order as compared to the graph of
integer order derivative.



Fractional optimal control approach to the diabetics model 79

(a) (b)

Fig. 1. Number of pre-diabetics with and without control (a), Number of diabetics without
complications with and without control (b)

(a) (b)

Fig. 2. Number of diabetics with complications with and without control (a), Number of pre-diabetics
of fractional optimal control with different values of α (b)

(a) (b)

Fig. 3. Number of diabetics without complications of fractional optimal control with different
values of α (a), Number of diabetics with complications of fractional optimal control

with different values of α (b)
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(a) (b)

Fig. 4. Comparison of pre-diabetics with different values of α without control (a), Comparison of
diabetics without complications with different values of α without control (b)

Fig. 5. Comparison of diabetics with complications with different values of α without control

7. Conclusion

In the present research, a mathematical model described by fractional derivatives
has been considered and presents a population infectious of pre-diabetics where
diabetics are considered with and without health problems. The simulations that
occur show that when control is applied, the diabetic population with and without
complication is reduced. We have substantially more accurate numerical solutions
to the optimal control issue in the sense of Caputo derivative than the integer orders.
The extended Euler method is generally simpler and computationally less expensive
compared to more advanced numerical techniques. This can be advantageous when
dealing with large-scale models or when computational resources are limited. How-
ever, in optimality problems where high accuracy is required, the trade-off between
computational efficiency and solution accuracy needs to be carefully evaluated.
Further, in optimality problems related to diabetic population models, where precise
predictions are often crucial for informing medical decisions and treatment strategies,
the accuracy of the numerical solution is paramount.
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