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Abstract. Fractional derivatives are useful tools for many applications in different branch of
science such as optics and engineering. In this paper, the A-fractional frame that is obtained
along a space curve by using the A-fractional derivative is being examined in Euclidean
E3 space. In addition, the Darboux vector of the A-fractional Frenet frame is constructed.
Then the curvatures of the standard Frenet frame, the A-fractional Frenet frame and the
A-fractional Darboux vector are compared geometrically.
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1. Introduction

Fractional calculus has been an area of interest since the 17th century and has
been studied by great mathematicians such as Riemann, Bernoulli, Leibniz, Euler
and others [1-3]. Integer order derivatives and integrals have clear physical and
geometric interpretations to solve simplified applied problems. However, fractional
order derivatives and integrals have a rapidly growing field both in theory and in
applications to real-world problems, but not yet at the desired level. Presently, this
field is an effective method to better explain the real-world model. The fractional
derivative is assumed to have wider geometric and physical properties than the known
integer order derivative. Many physical papers have been published in response to the
expectations [4-9]. Scientists have wondered about the geometric interpretation of
the fractional order derivative and integral. Therefore, various approaches have been
presented. These approaches can be found in [10-17].

Although the differences of the fractional derivative are an important factor in
these approaches, most of the definitions of the fractional derivative do not fulfill
some of the requirements of differential topology, such as the Leibniz rule [14].
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However, the A-fractional derivative operator corresponding to the A-fractional space
satisfies the requirements of differential topology. Therefore, it is a tool for many
applications. Moreover, A-fractional ordinary and partial differential equations are
discussed in [18].

Along a space curve r(s), the variation of the Frenet frame {7 (s),N(s),B(s)}
is indicated by the Darboux vector D, which is a measure of the instantaneous rate of
change of each of the vectors {T,N,B} and given by

dT dN dB
gszT,gszN,gszB, (1)
where s is the arc length along r(s) [19-22].

The Darboux D = T + kB vector offers a practical way to interpret the curvature
K and torsion 7 in differential geometry. Curvature represents the degree of rotation
of the Frenet frame around the binormal unit vector, whereas torsion indicates the
amount of rotation of the Frenet frame around the tangent unit vector [19]. So curva-
ture and torsion are essential tools for understanding the behaviour of the frame.

The rate of instantaneous rotation is given by

D] = V7> + k2 2)

The Frenet frame is a standard tool for understanding the concepts underlying
differential geometry [19]. However, for geometric modeling applications, it is con-
troversial that the Frenet frame is the best frame to choose since it has a strong rota-
tion around the tangent vector. To avoid this negative situation, the so-called rotation
minimizing frame (RMF) has been introduced and studied in the literature [19-22].

This article consists of 4 parts. In the first part, the importance and rapid develop-
ment of the fractional derivative in various fields are mentioned. In the second part,
the basic concepts of fractional derivatives and integrals are explained and devoted
to A-fractional Frenet frame corresponding to the A-fractional derivative. The third
part contains the A-Darboux vector corresponding to the A-fractional Frenet frame
and curvatures. The last section is devoted to the conclusion.

2. Preliminaries

In this section, some fundamental concepts and results of fractional analysis are
introduced. In addition, the A-fractional derivative that is obtained with the help of
the Riemann-Liouville fractional derivative, and the integral is expressed.

For a function f(v) € L'[a,b] that is continuous and differentiable, the left and
right fractional integrals of order y are defined as follows:

U0®) = 55 [ =07 s, v>a ®
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where I'(y) = / e v’ 'dv is Gamma function [3]. Moreover, for polynomial
0
k
=0

functions f(v) is expressed in the form

Ch+1)

Yok —
o= C(y+k+1) )
and for functions f(v) given in the interval [a,b], each of the expressions
v __ L d
(DLN) = Fr—yy s [, =010 ©)
Y - _ ! i ’ —v)7Y
(D} D0) =~y [, (¢~ 0 s 0

is called a fractional derivative of order ¥, 0 < y < 1. In addition, there is a connection
between Riemann-Liouville fractional derivatives and integrals, as follows [3].

D(17f(v)) = f(v) ®)
Furthermore, the Riemann-Liouville fractional derivative is defined by
d - 1 d [V _
DIf(v)=— (I, " - / — 1) f(t)dt 9

Although fractional derivatives and integrals are useful tools for describing real-world
problems, it is quite difficult to construct their differential geometry. Because many
definitions of fractional derivatives do not satisfy certain properties, such as linearity
and the Leibniz product rule. The A-fractional derivative which is introduced below,
is a convenient tool for constructing differential geometry (see [14]).
Let f(v) be a differentiable function for all v € R. The A-fractional derivative
(A-FD) is defined as:
RLpyY f(l))

iDL f(v) =45 1

D) = S (10
Considering the definition of Riemann-Liouville fractional derivative given by
Equation (9) and Equation (10) can be expressed as follows [14]

daly "f(v) -
dv _ dalv f('l))
ddy Y(0)  daly (V)
dv

2Dy f(v) = (11)
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where if € = .1, "(v) and F(&) = I}, 7 f(v) is taken, A-FD is defined as traditional
a derivative in (§,F(&)) fractional space. The fractional differential geometry is
defined as conventional differential geometry in the A-fractional space (&,F(&)),
with the following derivative definition,

dr ()

Dhro) =

12)

In addition,

KDy (ay Tf(0)) = £ (V)

is very important as it pulls back various functions from the A-fractional space to the
standard space. This definition is obtained in three-dimensional Euclidean spaces as
follows [14].

Let a(v) = (v, f(v),g(v)) be a space curve in the Euclid space. Considering
equations & = oIy "0, F(E) = ofy "f(v) and G(&) = oI, "g(v), then is constructed
a new curve a(&) = (§,F(§),G(&)) in the conjugate A-space. For the curve
A-fractional &(&) : I — R, the A-fractional tangent vector, A-fractional binormal
vector and A-fractional normal vector are defined as follows,

1§) = oyt B8 = T R N =BAEATIE) (13
Furthermore, the A-fractional curvature and torsion functions are defined as
_lleg)na"E)l
“ = e (1
(6 SEE.E ) > s

I (&) na(S)]1?

where ' denotes the derivatives respect to & [14]. In addition to these, Serret-Frenet
equations in A-fractional space are expressed as,

T, (8) 0 kn(§) 0 TA(E)
N;\(é) =va(8) | —Kka(8) 0 A (§) Nn(§) (16)
B),(§) 0 —m() 0 B.(8)

where v, (&) = ||&'(&)]| is a fractional velocity function [14].

3. The A-fractional Darboux vector

In this section, the geometric interpretation of curvature x, and torsion 7, by
using the A-fractional Darboux vector is explained.
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The A-fractional Darboux vector corresponding to the fractional space
(§,F(§),G(&)) defined by the A-Frenet frame {Tx(&),Nx(&),BA(E)} provides the
following properties,

WA(E) x TA(E) =T/ (&)
Wh(E) X Na(§) =N, (&) (17)
WA(E) xBA(E) =B\ (&)

Moreover, the A-Darboux vector W, (&) can be written by using the A-Frenet bases
vector as follows,

WA(E) =wiTh(§) +waNa(E) +w3Ba(E) (18)

Vectorial multiplication of both sides of the equation (18) by T) (&) gives,
WA (E) x Th(E) = —w2BA(E) +w3NA(E)
(19)
= wy = 0,w3 = va(&)Kn(E)

Similarly, if both sides of the equation (18) are multiplied vectorially by N (&) and
B, (&), one obtains

w1 =VA(E)TA(8), w2 = 0,w3 =va(S)KA(S) (20)
Based on these results, the A-Darboux vector is expressed as follows,
Wa(E) =va(E)TA(E)TA(E) +va(E) KA (E)BA(E) (21

The magnitude of the A-Darboux vector is obtained by

WA =va(E)\/TR(E) + KR (E) (22)

Example 1 Let us compute the A-Frenet frame {7T),Nx,Bx} and the A-fractional
curvature and torsion functions of the curve given by

o:R—E?

v —a(v) = (v,v%,0%) @3)

Inspired by Eqgs. (13), the A-fractional curve is expressed in the following form,
&(v) = (ofy "0, ol V2, ol Tv?) 24)

Since the fractional integral of the polynomial function v* is calculated as follows,

T(k+1)

) Ntk 25
I'(n+k+1) (25)

olj vt =
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the components of the curve @&(v) are found

-y, F(Z) 2—y
TGy
-y, 2 F(3) 3—y
oly Tv* = Ta_7) ) (26)

I(5-7)
The A-fractional &(&) is expressed as following,
a(8) = (5, F(5),G(S)) 27
where
__T@
A 9

By using equation (27), we have

=T(3-y)77E (29)
Combining equations (26) and (29), it becomes

3—

<

N

=Y

FE) = T (=177

6 -
4-73B-7

Finally, A-fractional curve @(&) is found as
o) (£ XC-DTEH Gra—pTie
o B-n 7 @-nG-Y

Now lets calculate the A-Frenet frame of the curve @(&). The first order differential
according to the & parameter of fractional curve &(&) is obtained as

e [ 2T(B—y)TIETT 6D(3—y)TTETT
“@‘Q’ 2y ’(3y><2y>> Gh

(30)

4—

INCRRIESIES

<

G(§) =
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r(3—y)7

7y , SO we have

For the sake of simplicity, let us take y =

<

1 ) yRETT
d’(é):<1,2w€“,6(2 1vE )

32
Sy (32)
Similarly, the second and third order derivatives of the fractional curve are calcu-
lated as,

o (o 2wEET 12y2ET
wl= (O’ 2-7" G- >

, (33)
~ I _ 2(y— I)V/(S% 12}/1116%
o (5)_ (07 (2_,)/)2 ’(3_'}/)(2—')/)>

The fractional tangent vector, binormal vector and normal vector of the curve &(&)
is found as follows:

3_
T.(&) = 0oy

1 — 287
Jl+(2w527>2 (6(2 Yy-§ >

B-7)

(172%2.7,6(2—;/)‘;/2523)

2YRERT —12y2E7T 2yEty
G-y G-y "(2-v
B/\(é):

yil N\ 2 y 2 -1\ 2 (35)
P N e R S AN S
(3-7)

B3-7)

and

N/\(é) _ (N/\l(é)vN/\Z(é)vN/G(é))
M(E)N (&)
where

(36)

(37
» 2 uBETS
Mia(§) =26 ppytgs - BT
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36(2— 7)2y2E 7T
(3=

M (&) =36(2—y)2y2ETT +4(2— 72 + (B— )y 267 (38)

Nn3(€) = +2y—-6

6(2— )WL
(3-7)

The fractional curvature and torsion of the curve & (&), respectively, are calculated as:

yHl N 2 y o\ 2 y-1
123 —12y%¢ = 2yEs
( 3-7) ) +< B3-7 > +<(2—?’))

K/\(‘S): > 3
1+ <2w§2%7)2+ (6(2_}/)"’25”)

N(E)=1+(Q2yET7) > +(

2

(3-7)

3 3r

25 25F

0.5 05F
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Fig. 1. The fractional curvature x (blue) and curvature k(red)

In Figure 1, it is easy to see that when the 7y value approaches 1, the fractional cur-
vature approaches the curvature. However, as the y value approaches 0, the curvature
becomes smaller in a certain range.

3y-3
24yE T (1—y+7y(2—7)*y?)

7 (E) = RERS O8Ik 2 (40)

12y’gs R ANN s
( G-7 ) *( G- ) *((z—@)

Similarly, the same geometric interpretation can be made for torsion as shown in
Figure 2.
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Fig. 2. The fractional torsion T (blue) and torsion 7(red)

In addition to the A-fractional Darboux vector of the fractional curve, @&(&) is found
as,

WA(&):

63 -y e (1-y+72-1*y) L 62— y)yREr
27 LAY TG )

(o) s cons) o]

41)
yety —1ye 2yl
BG-n " B-v (2-v
2 2
AN [62-pyPETT
1 2ypé s Y 5 0
[+<W5Y>+< G-7)
The magnitude of the A-fractional Darboux vector is that,
IWA(E)] =
L 6(277)11/252%7 ’ 6(377)11/"6%(lwa(H)zwz) i
H(z"’ém) - (3-7 2—7)?
2 2 2 +
( 6(2—7)w2§r7> +<—6w§ﬁ> (3-7) >
42)

2

26777\ =
—12y~E Y 2yé Y
+< G) ) *( @) )

5
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Fig. 3. Comparison of the instantaneous angular speed of the A-Frenet frame (blue),

Frenet frame (red), Bishop frame (green)

1
@ 7= 100

1
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9
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Fig. 4. The Frenet frame (left) and A Frenet frame along the curve the normal-plane
vectors are shown

Figure 3 illustrates three special cases of the instantaneous angular speed of the
A-Frenet frame (blue), Frenet frame (red), Bishop frame (green) where v = 0.1,
Y= 0.7 and y = 1 on the interval [1,2] are considered.

Finally, the behaviour of the normal-plane vectors (the normal vectors (red) and
binormal vectors (black)) of the Frenet frame with the A-fractional Frenet frame is
compared in Figure 4.

4. Conclusions

In this study, the norm of the A-fractional Darboux vector obtained with the help
of the A-fractional derivative gives better results than the norm of the Darboux vector
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obtained from the standard Frenet and Bishop frame in a certain range. However,
the A-fractional Frenet frame is more difficult to construct than the standard Frenet
frame. As expected, as y approaches one, the A-Frenet frame approaches to the
standard Frenet frame.
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