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Abstract. In the present paper an analysis of models for eqitype and multi-type claims
processing, when general number of insurance contracts is function of time, is carried out.
The closed queueing networks are the models for claims processing. The problem of opti-
mal number of estimators on definite intervals of time is considered.

1. Introduction

In the present paper we consider the mathematical models for eqitype and
multi-type claims processing. At the end of the paper we raise some problems,
which we are going to solve in the nearest time. We consider the work of an insur-
ance company on the interval of time [0,7"]. Assume that the number of contracts

concluded with clients at the moment of time ¢, t <T, is some definite function of
time K (7). Notice, that for the first time the detailed problem statement and its

solution when the number of contracts is constant, i.e. when K(¢) = K, was given in
[1]. Therefore we omit some details in the present paper. However, it should be
noted, that the case when K(¥) is functions of time corresponds to the real condi-
tions of an insurance company’s functioning more, so the considering in the paper
model is more adequate. Note, that research on multi-type claims processing model
in the case K(f) = K was done in [2, 3].

2. Models for eqitype clams

In the case of insurance incident an insurer raises a claim. This claim may be
in two stages: the stage of estimation and the stage of payment. Let the number
of company employees who estimate claims be »—1. We call them estimators.
Insurer’s claims may be in one of the following states: Cy - a claim is not raised, C;
- a claim is in the stage of estimation, C; - a claim is in the stage of payment. We
need the random process k(¢) to be a Markov process, so assume that the transition
probability from the state Cy into the state C; on the interval of time [, + Af] is

Ho (DN +0(A), where g1, () is intensity of a such transition and g, (¢) is piecewise
analytical function of time with two intervals of constancy:
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,1€[0,T/2
Loy (1) = ,Ui)l [ ]
Mot €(T/2,T]

This follows from the real conditions. For example, it may be one in wintertime
and other in summertime. The times of claims processing by estimators and the
times of transitions from the state C, into the state C, are distributed according
to exponential rule with intensities g, and x4, accordingly. Assume, that at some
moment of time 7 our system is in the state k(¢) = (k,(¢), k,(¢)), if at this moment of
time k, (¢) claims are in the state Cy, and k, (¢) claims are in the state C,.

Let us introduce the following coefficients: Dy is company’s profit per time unit
form one insurer, when he does not raise a claim, i.e. the claim is in the state C,;
D; is company’s loss from a claim when it is in the state C;, i =1,2; E| is a salary
of a estimator per time unit; £, is a salary of a claim payment cashier per time unit.
Then at the moment of time ¢ the company’s profit is equal to

2 2
(1) = Dy(K(1) = 2 Kk, ()= ) Dk, () — Ey(n—1) ~ E,
i=1 i=1

Since the vector k(¢) forms a two-dimensional Markov random process, then 7/(¢)

is also a random process. We find an expression for the average income from an
insurer on the interval of time [0, 7]

I1(7) 17 &
R(t)=TjM{K()}dt— 0—;1{2 (l‘)+E,-l,-(t))}dt

0 0

where d, =D, + D,, n,(t) = M{k(t)} i=12, l(t)— , L) = and com-
K () K( ) ( )
pany’s average loss is characterized by a functional
1t 2
WD) =W (T = | {K(r)Z (dn(0)+E] (t))} dr (1)
0 i=1

We are interested in the following problem: to find a number of estimators who
have to work during the intervals of time [0,7/2], (T'/2,7T], so that the average

number of claims which are in the states C; and C, does not exceed n—1 and 1
accordingly and loss (1) is minimal:
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W (T) — min

KOm(t) <n—1,t€[0,T] 2)
KO, (t) <1,t€[0,T]

Note that in this case the probabilistic model of the claims processing maybe
a closed queue system which consists of three systems with according number of
service lines in systems and according transition probabilities between systems.
The system S; with service lines number m, =n—1 corresponds to claims pro-
cessing in the stage of estimation, the system S, with service lines number m, = 1
corresponds to claims payment, the system S, corresponds to claims stay in the
state Co; transition probabilities equal to p, = p,, = p,, =1 accordingly, p; = 0
in other cases. Note that the number of claims in the network does not depend
on time.
Assume that K(1)> K", t€[0,7] and K" >1. It also corresponds to real prac-
tice conditions. Using technique stated in [2], it is possible to show that density of
k) (kO k@)
K@) \K@®) K@

to an accuracy O(g” (1)), where £(¢) = 1,(2), satisfies the partial derivatives equation

probabilities distribution p(x,) = p(x,(),x,(t)) of the vector

2 2 2
PED_ 5 2 (4 enpen)+ 2 Y 2 (B e npten)s

ot 5 Ox, 2 55 0x0x, 3)
+2e()K'(t) p(x,1)
where
2 2 —Li=
4, (x,0)= ; ;4 ,; min( (1), x (1)) + g, ()1 — ; X, (O); () =0, g, = {py Y

2 2
%ty min(l (1), (0) + o, (01 =Y x, ()i = j
J=1 Jj=1

By (x,1) = =2, min(/,(1), x,(1)),i =1,/ =2

Note, that when K(¢) = K, this equation turns into corresponding Fokker-Planc-
-Kolmogorov equation for this case.
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Further we should find a solution of the optimization problem under constraints
A={0<n(t) <[ (1),0<n,(t)<1,(¢)}. Besides the equality holds:

omin(u,v) u=v
v =clu-v)= {0u<v

Therefore it follows from the type of coefficients B, (x,#) and definitions /,(¢),
x,(t), i=L12, py,(t), and bounded density p(x,7) that the part of the expre-

2
ssion g) Z 8 (B,.J(x,t)p(x,t)) concerning the items of the type

i,j= 1
&0 _o
2 0Ox0x,

the equation (3) may be written in the form:

(,u,. min(l,(t),x,.(t))) in the equation (3) vanishes, so in the region 4

a 2
pg’t):‘%E(A (w0pC0)+ é)ﬂom 05 (O —5 )Pl

+2e(O)K'(t) p(x,1)

Making use of several obvious transformations the last equation may be rewritten
in the following way:

P 0+ 260K DI
+ [ 1%, (1) = 11, (O = x,(t) = x5 (1)) — £(£) 1, (1)] 5p(;c t) @
1
op(x.0) , &) 5 (x N

+ %, () = gy (D)) =+ — oy (D1 = X, (1) = X, (D)) ———

Ox, 2

The equation (4) differs from the Fokker-Planc-Kolmogorov equation only by
the expression 2&(¢)K'(¢), therefore we can try to find its solution as the density

of probabilities distribution of two-dimensional random quantity (it is important
to note that we are interested in components of the vector #(f) more than in the
solution of the equation (4))

p(x, f)— \/|D(t|eXp -5 Z(x (O =m,(0)d, (O)(x, (1) =n, (1))

1/1

Let us expand the coefficients of the equation (4) in Taylor series in the neighbor-
hood of the point (n,(¢), n,(¢)) and not go beyond the first expansion terms:
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a,(n,1) = gy + iy + g, (1) + 26K (1)
a,(n,1) = (4 + poy (D) () + po, (Ony (8) — o, (E)(E(F) +1)

as(n,t) = pyn, (1) = gy (1)

ay(n.1) = %umm(l (0~ my (1))

Let us find the derivatives of the function

P(a) = p(xy(0).3,(0) = i\/det D(1) exp[—%[(xlm (O dyy () +

205, (6) = m (D)% (1) = 1y (O)edy (1) + (%o () = 1y (1)) o (D)]] = (1) P D)
where det D(¢t) = d,,(t)d,, (t) —d}, (1)

% —a (0 PO 2 ae PO 0 - mON O -0, 0+
+(x, (1) - nl(t))zdl,l(t)"_ 2(x1'(t) _nl,(t))(x2(t) —n,(1)) +2(x, () — ny (1)) x
x (x5 (1) = ny (0))dy, () +2(x, (£) — ny (1)), (1) — 1y (£))d 1, (1) +
+ 23, (1) = 1y ()5 (1) — 15 (1)) 3y () + (3, () — 1y (1)) 5 (0)

8[?(;)):, 1) _ _a(t)e_ﬂ(l)[(xl(l) —ny (1), (1) + (x, (1) — ny (1)d,, (1)]
1

81?6(;6, 1) — _a(t)e_ﬂ(t)[(xl () —n(0)d (1) + (x, (1) — 1,y (1)d 1, (1)]
2

0% p(x,t —B(t —B(t

ELED a0 PO 0= m (D 0+ (0~ OF eVt 1)
1

Let us substitute in (4) the above expressions for the density derivatives p(x,¢) and

coefficients a,(x,1),i= 1,4. Comparing the terms of the same powers (x,(t)—n, (1))

and (x,(¢) —n,())(x;(#) —n,(?)), i, j = 1,2 in this equation, we can get the differ-

ential equation for n,(¢), d;(?), i,j = 1,2 determination. In particular, if we com-

pare the terms of (x,(¢)—n,(t)), (x,(t)—n,(¢)), then after the according transfor-

109



Scientific Research of the Institute of Mathematics and Computer Science

mations we get the ordinary differential equations set for the components of the
vector n(f)

{n; (0) = (=t = oy () (6) = 101 (s (0) + (1+ (1)) s (1) )
my (1) = (1) — oy (1)

In practice the function K(¥) is usually periodic and may possess the bounded
values (in most cases sufficiently great). Therefore it is convenient to assign it in
the following way

t)Z,#, q,e.d =const, q,e,d>0, d>e
esin(bt)+d

_esinbi+d _ e G+ = asin(br) +, a=

£
q q q
consideration the type of the function g, (¢), it is possible to find a general solu-

then &(¢) , c:i. Taking into

tion of the equations set (5) in the region A on the interval of time [0,7 /2], using
the fundamental matrixes method [4]:

(1) = {_ (A + 1)) (Mo + Hoi©) (fq + ,;lz ) Hoab }eﬂ‘l N
(=44 (B +b*) (A, - 4)

+{(ﬂq + 15 ) (o) + Ho1€) n (A + t) oy ab }eﬂa’ _

(A=) (B +b7) A - 4)

(6)
_ (z(;i Z 2‘)‘(2;2”0_11) (A, sin(bt) + b cos(bt)) +
+ (szl Zz‘)‘zz‘fz [ Casin(b)-+beos(b) + Wy * Hon)ty ZZC)”Z
nA (1) = {_ 4 (fo) + Hoi©) . ,ulz,umab }e;tll n
(A4 =4 (4 +b6°) (A4, - 4)
+[#l(ﬂ01 + Hoi€) + o ab }eﬂzf _
(4 -4, (B +b* A= 4) (7

v +2‘12%)‘(OZ’ e (4, sin(bt) + b cos(bt)) +

Ly Hoyd . (H01 + HoiC) 4
+ (A, sin(bt) + beos(bt)) + ~—————
(B +52) (2~ 4) A
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where:

1
A :—7(,“1 + 1 + Ly, +\/(,u] — I, +/U01)2 =4 pi iy o ) (8)
Ay =—h = = 1y = Hyy

and also on the interval of time (7°/2,7T]:

14
nle(t) = [(ﬂ}z + ﬂz)e% =12 _(/ﬁ + ﬂz)eﬂll(t_T/Z)} nlﬂl(T/iz) +
2=
. [e/i} «T/2) _ A (t—T/Z)} ﬂglnly (Tl/ 2)
H=4
_[(ﬂi + 1) (o1 + Hoi€) N (4 + p ) 145, ab }/1} (-T/2)
(%~ A)A (4 +b*)(H - 4)
+{(/112 + 10) (o + H51€) (B + o) iy }eﬂz(t—T/z) -
(%~ ) () +b*)(H - A)
- ((/fz(j; ++ ;2)12{’4) (A sin(b(t — T/ 2)) + beos(b(t — T/ 2)))+

(i MMt G- T/ 2)) + beos(b(e— T/ 2))) + Fn* Ho b

€))

A A ) A%
(1) = [eﬂg (t-T/2) _eﬂ%(r—T/zq Pt (T12)
XA
+[(ﬂ£ +Iu2)e/1}(t—T/2) Y +/u2)e/1'2(t—T/2)} n;](T/%) ~
h-4
_ 4 (Hg) + Hoi€) fapiab A@-T/2)
Y 7T I Y B T *
(A=A ((A) +b7 )4 - 4) (10)
(o1 + Hoi©) Moy ab Aa-T/2)
+ Y 7 Y
(L =4, ((AH) +b° )4 - 4)
- Fa oy (A sin(b(t — T /2)) + beos(b(t — T/ 2))) +
(B) +b7) (A~ A)
Gy f})‘z’;& - A sin(b(t—T/2))+bcos(b(t—T/2)))+W

where 1, 2, are computed in the same way as 4, 4, using formula (8) changing
Hoy ON fhg;.
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3. On the solution of the optimization problem
in the case of equitype claims

Note, that all found functions n’*(¢),i,j =1,2 by formulae (6)-(10) have the
following type

at

n(t) =me ™ +ge ™ + hsin(bt) + gcos(bt) +s, a> >0

with determined coefficients m,q, h, g,s = const, and do not depend on the number
of company employees #n. Obviously, in this case the functional W (T, n) is linear
increasing function of n, W(T',n) = Dn+ C. Hence the solution of the problem (2)

is a minimal » when on average there won’t be queues on the stages of estimation
and payment. l.e., the solution of the problem (2) reduces to determination of the
minimal number n, which satisfies the conditions of this problem.

Since on the intervals of time [0,7'/2],(7/2,T] the function g, (¢) possesses

two different values, then optimal number # is different for these intervals. Let us
denote these numbers n:< ,n; . First let us consider the work of an insurance com-
pany on the interval of time [0,7'/2]. According to obtained results (6), (7) the

average number of claims N, (¥) =K (t)n,lA (t), i=1,2 at the moment of time ¢ in the

stages of estimation and payment does not depend on #, therefore, as it follows
from constrains (2) and type of the functional W (7', n)

n :[1+N11A]+1
where [...] is an integer part of the number in brackets

N = K(On(t
1 ax (K@Om" ()

Obviously, the average number of claims at any moment of time from the interval
[0,7/2] does not exceed n" —1 - the number of estimators working in an insurance
company on this time interval. At the same time we should remember that the ine-
quality n)' (1) <1,(t),t €[0,T/2] has to be true. So it is necessary that

KOn @) <1
IE{R%]( O, (1))

At the moment of time ¢=7/2 the function g, (¢) changes its value and

becomes equal to , . The problem (2) corresponds the case when the system
is in the region 4 on the intervals of time [0,7/2], (T/2,T]. At the same time as
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it follows from (9), (10) the values N,(¥) =K (t)nIZA (1), i =1,2 do not depend on »
on the interval of time (7'/2,T] as before and therefore

nt =l N4
where

NZA: Kt 2At
: tef?%fn( On (1)

Also the following inequality should hold

24
teg!?Z)fT](K (Ony" (1) <1

So the optimal number of estimators on the intervals [0,7 /2], (T'/2,T] equals
to n —1:[1+N11A], n —1 :[1+N12A] accordingly. Note, that in brackets of this
ratios the ones are added because at computation N;*, N}* do not exceed one,

since nllA(t), nle (¢) are computed accurate within terms of infinitesimal order
e()=1/K(@).
4. Model analysis for multi-type claims

Now we assume that an insurance company concludes with insurers contracts
of n—1 types, i.e. at the some moment of time ¢ from the considered interval of

time [0,7] the company concluded Ki(r) contracts of the type i, i=1,n—1,
n-1

ZK, (1) = K(¢). For example it may be life, property, trucking industry, profession
i=1

insurance and so on. The claims may be in the states C,, i:@, described above.
Let m; estimators be engaged in estimation of the type i claims, one cashier is en-
gaged in payment. Type i claim transition probability from the state C, to the state
C; on the interval of time [z, 7+ Af] equals to x4, (HA+o(A), where p,,(¢) is an

intensity of such transition, the times of type i claim processing are distributed

according to exponential rule with intensity 4, » =1,n—1. Assume, that at some
moment of time our system is in the state k(¢) = (ko ), k (1), ...k, (1), k, (t)), if at

this moment £;(¢),i =1,n—1 claims of the type i are in the state C,, and k,(¢) claims
are in the state C,. Let D; be a company’s loss in a unit of time from one claim of

the type i, when it is in the state C,, i=1,n—1, D, be a company’s loss from the
claim in the state C,, E; be a salary of one estimator of the type i clams in a unit of

113



Scientific Research of the Institute of Mathematics and Computer Science

time i=1,n—1, E, be a salary of a cashier, then as before the average company’s
loss on the interval of time [0,7"] may be described as before with a functional

T

W(T) =W (T,mym, )= % | [K(t)zn:(d,n, )+ EL (t))} dt
i=1

0

where n,(t)=M k® , l,(t):i, i=lLn-1, m,= 1. Now we are interested
k() K ()

in the following problem: to find the number of estimators m;, i =1,n—1, who have
to work on different intervals of time so that the average number of type i claims
in the estimation and payment stages at the moment of time 7, i.e. K(¢)n,(¢) and
K(t)n,(t), does not exceed m; and 1 accordingly, »=1,n—1, and the loss W(T) is
minimal:

W({T)—  min

m;.i=l,n—1 (11)
K(On,(t)<m,,i=1n,1[0,T]

In this case, the probabilistic model of claims processing may be the queueing
network, consisting of n+1 systems S, S,,S,,...,S,, with service lines number

K,m,my,..m, 21, m, = 1 accordingly, and 1<<K(¥)<K. Claims transition

probabilities between the network’s systems are p,, #0, p,, =p,, =1, i=Ln-1,
p; =0 in other cases; at the moment of time 7 K(#) claims are processed in the

system; disciplines of claims processing in the network systems are FIFO. Note
that as before the network is closed by the structure, but the number of claims
processed in it depends on time.

It is determined, that the density of probabilities distribution p(x,t)=

k@) (k@) k@ k()
K@) K@) K@) K@)

O(&’ (1)), where (r) =1 (1) satisfies the partial derivatives equation

= p(x,(1), x,(¢)....,x,(t)) of the vector

j accurate within

n n 2
Ipx.1) :—Zi(A,(x,t)p(x,t))Jr% > 0 (B(, (x,t)p(x,t))Jr

ot =1 Ox; 1771 0x,0x,; (12)

+ne(t)K'(t) p(x,1)

where A4,(x,0)=Y" 1,q,; min(,(£),x (1)) + o, (N1 =D x; (1)) 1, (1) =0
Jj=1

Jj=1
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D uymin(l (0),x (1) + po, (DA =D x, ()i =
Jj=1 Jj=1 c e e 4
. o ~Lj=tji=ln
B (x,t) = =2, min(l;(1),x,()),i # j, j=n g =\Lj#ii=n__
0,j #i,i=ln-1

0,i#j,j=Ln-1

When K(7) = K this equation turns into Fokker-Planc-Kolmogorov equation for the
vector x, hence we can use the Gaussian approximation for its solution.

5. The case of two types insurance contracts, n =3

Let’s get seek the solution of the equation (12) as the probabilities distribution
density of three-dimensional random quantity

7]1

p(x.0) = \/—\/D(t expl —— Z(x(t) n,(0)d; ()(x,;(6) —n (1))

Further we should seek the solution of the optimization problem under the con-
straints A4, ={0<n,;(t) </(¢),i=13}. It follows from the type of coefficients
Bj(x,t) and definitions /,(f), x(f), i=1,2,3, t3(¢), and bounded density p(x, ) that
82
ox,0x

3
the part of the expression ? Z (BU (x, ) p(x, t)), concerning the items of

i,j=1
&) o
Ox,;0x y

region A4; it may be written in the form:

(,u, min(l,-(t),x,(t))) in the equation (12) vanishes, so in the

the type —=

ap(a); - _Z (A (x,0)p(x, t))"‘ ﬂm(t) - [(1 (D)= %(0) = x ()P O]+

+g§) ) 1050 =520~ 5O x0T+ 350K O )
2

Making use of several obvious transformations for the partial derivatives on the
right side we get
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op(x,1) _ omin(/, (1), x,(¢)) - omin(l, (1), x,(1)) +

o T ox,
o TR OO ) 4 0)+360K I+
Lty min (0,3, (6)) — 1y (O =, (0) = %, (0) = x5 (1)) — £(0) 1y ()] 51’;;» D,
Lty min(ly (1), %, (6)) — ptoy (O)(1 = 3,(6) = x, (1) = X, (1)) — £(1) 1 ()] apa():’) +(13)
Lty min(ly (1), (1)) — gty min(ly (0, %, (1) — g, minGl (0,3, ()] ap;z”) +
+ 20 4 001 (r)—a@)—xﬂr))%}“’ﬁ
+%’)u02(r)(1—xl<r)—x2(r>—x3(t>)%;’)

Using an expansion of the coefficients of the equation (13) in Taylor series in the
neighborhood of the point (#,(¢), n,(¢),n,(¢)) and not going beyond the first expan-

sion terms we get
(1,0 =y + iy + s + iy (1) + (1) 4 380K (1)
ay(n, 1) = (p + oy (D) (1) + oy (DN (1) = oy (D)(E(1) +1)
(10 = o (O (1) + (aty + i (O3 (6) — oy (O(E(0) +1)
ay (1,0) = fms ()= s (6) 1)
D 1= O =m0 =m0

as(n,1t) :%ﬂoz(t)(l_nl(f)_nz(t)_n3(t))

a,(n,t)=

Further we can find the derivatives of the function
p(x,1) = p(x(0), %, (1), x5 (1)) =
1

- deetD(r) exp[—%[(xl(r)—nl(r)fdn(r)+<x2(r>—n2(r)>2dzz(r>+
—

+(x3(1) - n3(t))2d33(t) +206(0) = ())(x, (1) =1y (0)d 5 (1) + 2(x, () — 1, (1)) %
X (263 (£) = 15 (1) () + 20353 (1) = 1y ()% (1) = 1y (D)l ()] = e ()e PO
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where
det D(t) =d, (t)d, (1)d5(t) + d ,(t)d 5 (1)d 5 (8) + d, (£)d 5 ()d 5 (1) -
—d,(1)d; 3(f) d33(t)d122(t)_dll(t)d123(t)

Substituting the obtained expressions for the derivatives of the density p(x,¢) and

coefficients a;(x,?), i :1,_5, in (13) and comparing the terms of the same powers
(x,(t)—n; (1)) and (x; () —nm,())(x;(H)—n, (1)), i,j = 1,2,3, we can get the differen-
tial equations for n(), dy(¢), i,j = 1,2 determination. For example, comparing the
terms of (x,(¥) —n, (7)), (x,(t)—n,(1)), (x5(t)—n,(t)), after the according trans-

formations we get the ordinary differential equations set for the components of the
vector n(?):

di

”611(’) = — g, () + 1, (D)1 + £(1) — Zn (1)
dnﬁzt(t) = — sy (1) + i ()1 + (1)~ Zn ) (4
% = lulnl (t) + ,u2n2 (t) - /u3n3 (t)

Assume, that each of two considered types claims entry intensity g, (¢), i = 1,2 are
piecewise constant functions

Ho-1 €[0,7 /2] Loyt €[0,T/2]
t 1) =
Moy (1) = { e (T12.T] Hop (1) ot e(T12.T]

Then using the fundamental matrixes method we can find the general solution of
the equation set (14) (nlm(t), n;A 0, n;A (¢))in the region A4, on the interval of time

[0,7/2]. For example, nllA(t) has the type:

Ayt 1 b
n’ (1) = i _;)(ﬂ@ —) {(ﬂfﬂm A (4o 11, +ﬂzﬂ01)+ﬂ2ﬂ2ﬂ01)( ;16 chib H
It . . . L\ 1 b
+ i = 216)(23 ) {(_ Aoy = A (py 113y + fs oy ) — ﬂ2ﬂ3ﬂ01)[% * ﬂ/;k b2 ﬂ +
gt . . . L\ 1 b
+ (23 _/:)MS —1) {(ﬂg/‘m + A3 (py ey "‘ﬂsﬂm)“‘ﬂzﬂsﬂm)( ;: + ﬂéi B2 H -
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\ A sin(br) + bcos(br)

N 67 (A = 20) (A = 4)

\_ Asin(br)+bcos(br)
N+ 57) (A = A)( Ay = 2)

\_ Asinbr)+becos(bt)  ppp,(1+¢)
(BN - -h) Ak

_a(ﬂfﬂgl + A (o gy + M foy) + [y s o (15)

+ a(— ﬂ%ﬂgl = Ao (b g + Js 1)) — Ho s My

- a(ﬂéﬂé‘l + Ay (i gy + 1 o)) + fho s oy

where 4,,4,,4, are the roots of the characteristic equation of the equation set (14).
n)"(1),n)" (r) have the same type and corresponding expressions on the interval of

time (7/2,T] - n**(¢), i=13.

6. On a solution of the optimization problem
for the claims of two types

Let’s go back to the original problem (11) when » = 3. Since all the functions
n/'(f), i=12.3,j =12, have the type

n(t)=me ™ + fo ¥ + ke + hsin(bt) + gcos(bt) +s, a> B>y >0

with determined coefficients m,n,k, f, g,s = const, and do not depend on the num-
ber of company’s employees m;,, i = 1,2, then in this case the functional W(7) is
linear increasing function of m,, i = 1,2, W(T',m,,m,)= Dm, + Bm, +C, D,B>0.
Hence, the solution of the problem (11) is a minimal m,, i = 1,2 when on average
there won’t be queues on the stages of estimation and payment.

Let m;,m, be optimal numbers of the claims estimators on the interval of time
[0,7]. According to (15) the average number of claims at the moment of time ¢

in the estimation and payment stages N = K(t)n*(¢), i =1.3, does not depend

on my,m,, therefore, as it follows from the constrains of the problem (11) and
the type of the functional W (T',m,,m,)

m =[1+N"], m; =[1+N}"]

where [...] is an integer part of the number in brackets,

"= max 2](K (t)nllA(t)), i=1,2. At the same time we should remember that the

" te0,7/
inequality n,"(¢) <[/,(¢),t €[0,T/2] has to be true. For the correctness of this ine-
quality we need that
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14
D 2](K(t)ng =1

So the optimal number of the estimators on the interval [0,7/2] equals to
ml>X< —1=[1+N"], m; —1=[1+ N,*] correspondingly. In the same way it is possible
to find the optimal numbers of claims estimators on the interval (7'/2,77].

7. Problems

The considering research on the claims processing models in insurance compa-
nies enable us to raise some new problems which are important from the theoreti-
cal and practical points of view.

1. In the general case for an arbitrary »n for the solution of the equation (12) it is
also possible to use the approximation method called Gaussian approximation.

Then we get the following differential equations set:

dn (¢ " -
n_;t( ) = (O + gy, O+ ()= D m(1)), j=Ln-1
i=1
dn;,(t) = 4, () + pony () + oot g1, m, ()= g, (1)

It is necessary to work out the analytical methods for the solutions of such
equations sets or at least to find out for what type of functions g, ,(?),

j=1n—1, it is possible to find analytical solutions.

2. It is necessary to work out the methods for characteristic models when the times
of claims processing on different stages are distributed according to the rules
different from exponential one. Such models describe a real situation more
adequately.

3. The research on the models when the general number o claims K(¥) is constant
or is a function of time. From the practical point of view it is interesting to
investigate a case when K(¢) is a random process, so it is also a topical problem.
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