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ON SOME MATHEMATICAL PROBLEMS 

OF CLAIMS PROCESSING IN INSURANCE COMPANIES 

Michal Matalycki, Tacjana Romaniuk 

Institute of Mathematics and Computer Science, Czestochowa University of Technology 

Abstract. In the present paper an analysis of models for eqitype and multi-type claims 

processing, when general number of insurance contracts is function of time, is carried out. 

The closed queueing networks are the models for claims processing. The problem of opti-

mal number of estimators on definite intervals of time is considered. 

1. Introduction 

In the present paper we consider the mathematical models for eqitype and 

multi-type claims processing. At the end of the paper we raise some problems, 

which we are going to solve in the nearest time. We consider the work of an insur-

ance company on the interval of time ].,0[ T  Assume that the number of contracts 

concluded with clients at the moment of time t, ,Tt ≤  is some definite function of 

time .)(tK  Notice, that for the first time the detailed problem statement and its 

solution when the number of contracts is constant, i.e. when K(t) = K, was given in 

[1]. Therefore we omit some details in the present paper. However, it should be 

noted, that the case when K(t) is functions of time corresponds to the real condi-

tions of an insurance company’s functioning more, so the considering in the paper 

model is more adequate. Note, that research on multi-type claims processing model 

in the case K(t) = K was done in [2, 3]. 

2. Models for eqitype clams 

In the case of insurance incident an insurer raises a claim. This claim may be 

in two stages: the stage of estimation and the stage of payment. Let the number 

of company employees who estimate claims be .1−n  We call them estimators. 

Insurer’s claims may be in one of the following states: C0 - a claim is not raised, C1 

- a claim is in the stage of estimation, C2 - a claim is in the stage of payment. We 

need the random process k(t) to be a Markov process, so assume that the transition 

probability from the state C0 into the state C1 on the interval of time ],[ ttt ∆+  is 

),()(
01

ttt ∆+∆ οµ  where )(
01
tµ  is intensity of a such transition and )(

01
tµ  is piecewise 

analytical function of time with two intervals of constancy: 
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This follows from the real conditions. For example, it may be one in wintertime 

and other in summertime. The times of claims processing by estimators and the 

times of transitions from the state C2 into the state C0 are distributed according 

to exponential rule with intensities 
1

µ  and 
2

µ  accordingly. Assume, that at some 

moment of time t our system is in the state )),(),(()(
21
tktktk =  if at this moment of 

time )(
1
tk claims are in the state C1, and )(

2
tk claims are in the state C2. 

Let us introduce the following coefficients: D0 is company’s profit per time unit 

form one insurer, when he does not raise a claim, i.e. the claim is in the state ;
0

C  

Di is company’s loss from a claim when it is in the state Ci, ;2,1  i =  E1 is a salary 

of a estimator per time unit; E2 is a salary of a claim payment cashier per time unit. 

Then at the moment of time t the company’s profit is equal to 

∑ ∑
= =

−−−−−=

2

1

21

2

1

0
)1()())()(()(

i i

iii
EnEtkDtktKDtП  

Since the vector )(tk  forms a two-dimensional Markov random process, then )(tП  

is also a random process. We find an expression for the average income from an 

insurer on the interval of time ],0[ T  
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pany’s average loss is characterized by a functional 
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We are interested in the following problem: to find a number of estimators who 

have to work during the intervals of time ],2/(  ],2/,0[ TTT , so that the average 

number of claims which are in the states C1 and C2 does not exceed 1−n  and 1 

accordingly and loss (1) is minimal: 
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Note that in this case the probabilistic model of the claims processing maybe 

a closed queue system which consists of three systems with according number of 

service lines in systems and according transition probabilities between systems. 

The system S1 with service lines number 1
1
−= nm  corresponds to claims pro- 

cessing in the stage of estimation, the system S2 with service lines number m2 = 1 

corresponds to claims payment, the system S0 corresponds to claims stay in the 

state C0; transition probabilities equal to 1
201201
=== ppp  accordingly, pij = 0 

in other cases. Note that the number of claims in the network does not depend 

on time. 

Assume that ,)(
∗

≥ KtK ],0[ Tt∈  and .1≥
∗

K  It also corresponds to real prac-

tice conditions. Using technique stated in [2], it is possible to show that density of 

probabilities distribution ))(),((),(
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to an accuracy )),((
2
tεΟ  where ),()(

2
tlt =ε  satisfies the partial derivatives equation 
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Note, that when K(t) = K, this equation turns into corresponding Fokker-Planc- 

-Kolmogorov equation for this case. 
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Further we should find a solution of the optimization problem under constraints 
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the equation (3) may be written in the form: 
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Making use of several obvious transformations the last equation may be rewritten 

in the following way: 
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The equation (4) differs from the Fokker-Planc-Kolmogorov equation only by 

the expression )()(2 tKt ′ε , therefore we can try to find its solution as the density 

of probabilities distribution of two-dimensional random quantity (it is important 

to note that we are interested in components of the vector n(t) more than in the 

solution of the equation (4)) 
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Let us expand the coefficients of the equation (4) in Taylor series in the neighbor-

hood of the point ))( ),((
21
tntn  and not go beyond the first expansion terms: 
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Let us find the derivatives of the function 
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Let us substitute in (4) the above expressions for the density derivatives ),( txp  and 

coefficients .4,1),,( =itxa
i

 Comparing the terms of the same powers ))()(( tntx
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−− , i, j = 1, 2 in this equation, we can get the differ- 

ential equation for ),(tn
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 ),(tdij  i, j = 1, 2 determination. In particular, if we com-

pare the terms of )),()((
11
tntx −  )),()((
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tntx −  then after the according transfor-
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mations we get the ordinary differential equations set for the components of the 

vector n(t) 

 




−=′
++−−−=′

)()()(

)())(1()()()())(()(

22112

0120110111

tntntn

tttnttnttn

µµ

µεµµµ
 (5) 

In practice the function K(t) is usually periodic and may possess the bounded 

values (in most cases sufficiently great). Therefore it is convenient to assign it in 

the following way 
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the fundamental matrixes method [4]: 

 

21

20101

1

12

22

1

0121

2

12

22

2

0122

2

12

22

2

0122

212

010122

1

12

22

1

0121

112

0101211

1

)(
))cos()sin((

))((

)(

))cos()sin((
))((

)(

))((

)(

)(

))((

))((

)(

)(

))((
)(

λλ

µµµ
λ

λλλ

µµλ

λ
λλλ

µµλ

λλλ

µµλ

λλλ

µµµλ

λλλ

µµλ

λλλ

µµµλ

λ

λ

c
btbbt

b

a

btbbt
b

a

e
b

abc

e
b

abc
tn

t

tA

+
++

−+

+
+

++
−+

+
−

−








−+

+
+

−

++
+

+








−+

+
−

−

++
−=

 (6) 

 

21

10101

1

12

22

1

011

2

12

22

2

011

2

12

22

2

011

212

01011

1

12

22

1

011

112

010111

2

)(
))cos()sin((

))((

))cos()sin((
))((

))(()(

)(

))(()(

)(
)(

λλ

µµµ
λ

λλλ

µµ

λ
λλλ

µµ

λλλ

µµ

λλλ

µµµ

λλλ

µµ

λλλ

µµµ

λ

λ

c
btbbt

b

a

btbbt
b

a

e
b

abc

e
b

abc
tn

t

tA

+
++

−+
+

++
−+

−

−








−+
+

−

+
+

+








−+
−

−

+
−=

 (7) 

 



Scientific Research of the Institute of Mathematics and Computer Science 

 111
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3. On the solution of the optimization problem 

in the case of equitype claims 

Note, that all found functions 2,1,),( =jitn
jA

i  by formulae (6)-(10) have the 

following type 
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increasing function of n, .),( CDnnTW +=  Hence the solution of the problem (2) 

is a minimal n when on average there won’t be queues on the stages of estimation 

and payment. I.e., the solution of the problem (2) reduces to determination of the 

minimal number n, which satisfies the conditions of this problem. 
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At the moment of time 2/Tt =  the function )(
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tµ  changes its value and 

becomes equal to 
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µ . The problem (2) corresponds the case when the system 

is in the region A on the intervals of time ],2/(  ],2/,0[ TTT . At the same time as 
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it follows from (9), (10) the values ),()()(
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 are computed accurate within terms of infinitesimal order 

).(/1)( tKt =ε  

4. Model analysis for multi-type claims 

Now we assume that an insurance company concludes with insurers contracts 

of 1−n  types, i.e. at the some moment of time t from the considered interval of 

time ],0[ T  the company concluded Ki(t) contracts of the type 1,1, −= ni  i , 

.)()(
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1

∑
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=
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n

i

i
tKtK  For example it may be life, property, trucking industry, profession 

insurance and so on. The claims may be in the states Ci, ,2,0=i described above. 

Let mi estimators be engaged in estimation of the type i claims, one cashier is en-

gaged in payment. Type i claim transition probability from the state C0 to the state 

C1 on the interval of time ]  ,[ ttt ∆+  equals to )()(
0

ttt
i

∆+∆ οµ , where )(
0
t

i
µ  is an 

intensity of such transition, the times of type i claim processing are distributed 

according to exponential rule with intensity µi, 1,1 −= nr . Assume, that at some 

moment of time our system is in the state ( ),)(),(...,),(),()(
110

tk tk  tk tktk
nn−

=  if at 

this moment 1,1),( −= nitk
i

 claims of the type i are in the state C1, and )(tk
n

 claims 

are in the state C2. Let Di be a company’s loss in a unit of time from one claim of 

the type i, when it is in the state C1, ,1,1 −= ni  Dn be a company’s loss from the 

claim in the state C2, Ei be a salary of one estimator of the type i clams in a unit of 
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time ,1,1 −= ni  En be a salary of a cashier, then as before the average company’s 

loss on the interval of time ],0[ T  may be described as before with a functional 
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=  i = ,1,1 −n  mn = 1. Now we are interested 

in the following problem: to find the number of estimators mi, ,1,1 −= ni  who have 

to work on different intervals of time so that the average number of type i claims 

in the estimation and payment stages at the moment of time t, i.e. )()( tntK
i

 and 

),()( tntK
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 does not exceed mi and 1 accordingly, ,1,1 −= nr  and the loss W(T) is 

minimal: 
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In this case, the probabilistic model of claims processing may be the queueing 

network, consisting of 1+n  systems ,,...,,,

210 n
SSSS  with service lines number 

,1,...,,,
121
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−n
mmmK  mn = 1 accordingly, and .)(1 KtK ≤<<  Claims transition 

probabilities between the network’s systems are ,0
0
≠

i
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pp  ,1,1 −= ni  

0=ijp  in other cases; at the moment of time t K(t) claims are processed in the 

system; disciplines of claims processing in the network systems are FIFO. Note 

that as before the network is closed by the structure, but the number of claims 

processed in it depends on time. 
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When K(t) = K this equation turns into Fokker-Planc-Kolmogorov equation for the 

vector x, hence we can use the Gaussian approximation for its solution. 

5. The case of two types insurance contracts, 3=n  

Let’s get seek the solution of the equation (12) as the probabilities distribution 

density of three-dimensional random quantity 
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Further we should seek the solution of the optimization problem under the con- 

straints }.3,1),()(0{
1

=≤≤= itltnA
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 It follows from the type of coefficients 

Bij(x, t) and definitions li(t),  xi(t),  i = 1, 2, 3, µ03(t), and bounded density p(x, t) that 

the part of the expression ( )∑
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 in the equation (12) vanishes, so in the 

region A1 it may be written in the form: 
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Making use of several obvious transformations for the partial derivatives on the 

right side we get 
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Using an expansion of the coefficients of the equation (13) in Taylor series in the 

neighborhood of the point ))(),( ),((
321
tntntn  and not going beyond the first expan-

sion terms we get 
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Further we can find the derivatives of the function 
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Substituting the obtained expressions for the derivatives of the density ),( txp  and 

coefficients ),,( txa
i

 ,5,1=i  in (13) and comparing the terms of the same powers 

))()(( tntx
ii

−  and )),()())(()(( tntxtntx jjii −−  i, j = 1,2,3, we can get the differen-

tial equations for ni(t), dij(t), i, j = 1,2 determination. For example, comparing the 
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tntx −  after the according trans-

formations we get the ordinary differential equations set for the components of the 

vector n(t): 
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Assume, that each of two considered types claims entry intensity ),(
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i
µ i = 1,2 are 

piecewise constant functions 
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Then using the fundamental matrixes method we can find the general solution of 

the equation set (14) ))(),(),((
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where 
321

,, λλλ  are the roots of the characteristic equation of the equation set (14). 
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 have the same type and corresponding expressions on the interval of 
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6. On a solution of the optimization problem 

for the claims of two types 

Let’s go back to the original problem (11) when n = 3. Since all the functions 
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with determined coefficients ,,,,,, constsgfknm =  and do not depend on the num-

ber of company’s employees mi, i = 1,2, then in this case the functional W(T) is 

linear increasing function of mi, i = 1,2, ,),,(
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Hence, the solution of the problem (11) is a minimal mi, i = 1,2 when on average 

there won’t be queues on the stages of estimation and payment. 
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,mm  be optimal numbers of the claims estimators on the interval of time 

],0[ T . According to (15) the average number of claims at the moment of time t 
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 At the same time we should remember that the 
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So the optimal number of the estimators on the interval ]2/,0[ T  equals to 
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 correspondingly. In the same way it is possible 

to find the optimal numbers of claims estimators on the interval ].,2/( TT  

7. Problems 

The considering research on the claims processing models in insurance compa-

nies enable us to raise some new problems which are important from the theoreti-

cal and practical points of view.  

1. In the general case for an arbitrary n for the solution of the equation (12) it is 

also possible to use the approximation method called Gaussian approximation. 

Then we get the following differential equations set: 
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 It is necessary to work out the analytical methods for the solutions of such 

 equations sets or at least to find out for what type of functions ),(
0
tjµ  

,1,1 −= nj  it is possible to find analytical solutions. 

2. It is necessary to work out the methods for characteristic models when the times 

of claims processing on different stages are distributed according to the rules 

different from exponential one. Such models describe a real situation more 

adequately. 

3. The research on the models when the general number o claims K(t) is constant 

or is a function of time. From the practical point of view it is interesting to 

investigate a case when K(t) is a random process, so it is also a topical problem. 
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