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Abstract. In this paper some property of sets of certain classes in the generalized metric
spaces are considered. In last section of this paper an example of a certain set of these classes
in two-dimensional Euklidean space will be given.

1. Introduction

Let E be a certain non-empty set and let [ be any non-negative real function
defined on the Cartesian product Ey X Ey of the family Ey of all non-empty
subsets of the set E. The pair (F,[) we shall call the generalized metric space.

Let a, b be arbitrary non-negative real functions defined in a certain right-
-hand side neighbourhood of 0 such that

a(r)——0 and b(r) ——0 (1)

r—0t r—0t

By Si(p;7)a(r) and Sy(p, 7)y(ry We denote in this paper so-called a(r), b(r)-
-neighbourhoods of the sphere Sj(p, r) with the centre at the point p and the
radius r in the space (F,).

We say that the pair (A, B) of sets of the family Ey is (a, b)-clustered at the
point p of the space (E,l), if 0 is the cluster point of the set of all numbers
7> 0 such that AN Sj(p,7) ey # 0 and BN Si(p, 7)) # 0.

Let k be any, but fixed positive real number, and let by the definition (see
the paper [9]):

Ti(a,b,k,p) ={(A,B): A,B € Ep, the pair (A, B) is (a, b)-clustered

at the point p of the space (F,l) and
1
FUANSUP, T)awry, BOSUP, o)) S~ 0} (2)
The set Tj(a, b, k, p) defined by the formula (2) we call the relation of (a, b)-

-tangency of order k at the point p (shortly: the tangency relation) of sets in
the generalized metric space (E,1).
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If (A, B) € Ti(a, b, k,p), then we say that the set A € Ey is (a, b)-tangent of
order k to the set B € Ey at the point p of the space (E,1).

We say (see [3]) that the set A € Ej has the Darboux property at the point p
of the generalized metric space (F,[), and we shall write this as: A € D,(FE,1),
if there exists a number 7 > 0 such that AN S;(p,r) # 0 for r € (0, 7).

In this paper we shall consider certain problems concerning the tangency
of sets of the classes Mpyk having the Darboux property at the point p of the
generalized metric spaces (E,1), for | € §¢. A certain theorem for the sets of
these classes will be given here.

2. On a certain theorem

Let p be an arbitrary metric of the set . We shall denote by d,A the
diameter of the set A € Fy, and by p(A, B) the distance of sets A, B € Ey in
the metric space (E, p).

Let f be any subadditive increasing real function defined in a certain right-
-hand side neighbourhood of 0, such that f(0) = 0.

By §7 we will denote the class of all functions [ fulfilling the conditions:

10 l: Ey x By — <0,00),
20 f(p(A, B)) <I(A,B) < f(d,(AUB)) for A,BE€ E.

It is easy to check that every function [ € § generates in the set E/ the metric
lp defined by the formula:

lo(@,y) = f(ple,y)) for z,y€ E 3)
Let us put by definition (see [6])
J/\\jp’k ={Ae€ Ey: pe A’ and there exists u > 0 such that
for an arbitrary € > 0 there exists 6 > 0 such that
for every pair of points (z,y) € [A, p; u, K]

p(z, A) p(z,y)
ok (p, ) P (p, x) < @)

where A’ is the set of all cluster points of the set A € Ey and
[A,pip, k] ={(z,y) iz € B, y € A and pp(x, A) < p*(p,x) = p*(p,v)} (5)

Theorem 1. If the set A € Ey is (a,b)-tangent of order k to the set B € Ej
at the point p € E for an arbitrary function | € §y and for every point x such

if p(p,z) <6 and < 6, then
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that (v,y) € [A,p; , k] there exists a point y € ANS|(p,7)q(ry and A > 0 such
that

p(z.7) < Mp(z, A) (6)
then A is the set of the class ]f\\jp,k.

Proof. Let (A, B) € Ti(a,b,k,p) for | € §y and A, B € Ey. From here, in
particular, it follows that

(A,B) € Ti(a,b,k,p) for | € Fiq and A,B € Ej (7)
where ¢d denotes the identity function defined in a certain right-hand side

neighbouhood of 0. Because every function [ € §;q generates in the set E the
metric p (see definition of the class §), then from here and from (7) follows

1
ﬁl(A N S1(p; 7)agry, B NS0, 7)) — 0 (8)
Putting [ = d,, from (8) we get
1
F (AN 5P 7)a(r)) U (BN Si(p,)b(r) — 0 (9)

Because

dp(AN S (P, 7)a(r)) < dp((A N Si(p,)ar)) U (B O Sip; m)eer)))

then from here, from (9) we obtain

1
r_kdp(A N Si(p,7)a(r)) P 0 (10)
From (10) it follows that for an arbitrary ¢ > 0 there exists ; > 0 such that
1 €
r—kdp(Aﬂ Sp(Ds7)a(ry) < 3 for 0 <r<é; (11)
Now we shall prove that for every pair of points (x,y) of the set [4, p; u, k]
p(@,y)
—<c 12
Pk (p, @) 12)
if only
plx, A)
r=p(p,x)<d and <6 13
op,) pF(p, @) 13)

Let us put ¢ = 1 and 6 = min(1, 55, 61). From here, from (6), (11) and from
the triangle inequality we have



56 T. Konik

pla,y) _ plxy)  puy) 1
S + <—d AﬂS T )a(r + < —-4+-—=c¢
pk(pu CU) pk(p,iﬂ) pk(p7aj) Tk P( P(p ) ( ))

what means that A is the set of the class Mp,k.

3. On a certain set of the class Mp,k

In this Section we will give an example of a certain set of the class J/\Zp,k in
two-dimensional Euklidean space, and will use Theorem 2.3 of the paper [7]
for certain subsets of this set.

Example 1. Let £ = R? be the two-dimensional Euclidean space. Let ¢
be a increasing function of the class C; (homogenous function together with
15 derivative) defined in a certain right-hand side neighbourhood of 0 such
that ¢(0) = 0. Using the de L'Hospital’s theorem and mathematical induction
for k € N we can easily prove that

(’Dk—kl (t)

— 0 (14)

From this it follows immediately

2%k+2
(1)
——— (15)
Let us put
C={(z,y): >0, 0<y <t (z) and ke N} (16)

__We shall prove that C' defined by the formula (16) is the set of the class
M, 1, where p = (0, 0). For this purpose let us denote
A={(t0): t>0} and B={(t,¢""(t)): t>0, ke N} (17)
Let 41, y2 be a points of the set C such that
y1 € ANS,(p,r), y2€ BNSy(p,r) for r>0 (18)

If according to (17) and (18) we put y2 = (t, ©**1(¢)), then

= p(p,y2) = /12 + 2 F2(t) (19)

Hence it follows that y; = (1/t? + ¢?#12(¢),0). From (19) and from the
properties of the function ¢ it results also that » — 07 if and only if ¢ — 0.
Hence and from the conditions (14), (15), (19) for » > 0 we have
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1 2( ) B ( 2 + 902]“"'2(7?) _ t)2 + <P2k+2(t)
2k P WL Y2) = (L2 + p2Fr2(1))k
B 2t2 + <p2k+2(t) —t /2 + 902’”2(7?)
- (t2 + 802k+2 (t))k
_ 2¢2k+2(t) + 12 — £\ /12 + o2k E2(t) 1
- 12k (1 4 g02k+2(t)/t2)k
5 S02k+2(t) N t— /12 4 S02]6-5—2(75)
10+ t2k t2k—1
_ 802k+2(t) B 902k+2(t)
t2k t2k—1( /12 1 (P2k+2(t) +1)
_y <P2k+2(t) B <p2k+2(t)
t2k 2k(\/1+ @2 42(¢) /2 + 1)

2
B 902]“'2(7?) 1 <Pk+1(t)
= 2—2k 1-— T 0
t L4+ /14 2 2(8) /12 | -0+ t 0+

what means that
1
T_kdp(c NSy(p,7)) ot 0 (20)

From here it follows that for an arbitrary € > 0 there exists 61 > 0 such that

1 €
T—kdp(C’ NSy(p, 7)) < 3 for 0<r<é (21)

Now we shall prove that for an arbitrary ¢ > 0 there exists 2 > 0 such that
for every pair of points (z,y1) € [A, p; u, K]

p(xayl) €
I 2 22
pE(p,x) 2 22)
when
pz, A)
r=p(p,x) < 62 and <6 23
p(p,x) < 2 o) (23)

Let y} be a projection of the point x € E at the set A, i.e., such point of
the set A that p(x,y]) = p(x, A). Because = = (t,£vr2 —t?) for 0 < t < r,
then
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p(yr,y) =r—t =/(r—t)2 <\/(r+t)(r —t) = Vr?2 — 2 = p(x, y1)
that is to say,
p(y1,y) < p(x, A) (24)

Let 11 = 2, 62 = min(3,£). Hence, from (23), (24) and from the triangle
inequality we have

px ) _ p(x ) +oWhhy) _ 20(e, A)
pF(p,x) p*(p, ) = pFp, )
which yields the inequality (22).
Lastly we shall prove that for an arbitrary € > 0 there exists 63 > 0 such
that for every pair of points (z,y2) € [B, p; i, k]

| ™

,O(x, 3/2) €
—F < = 25
pr(p,x) 2 (3)
if only
p(z, B)
r=p(p,x) < 63 and < 03 26
®,2) Pk (p, @) (26)
From the properties of the function ¢ it follows that
(") =0 = 0 (27)

what means that the set B is tangent to the axis x at the point p. From here
it follows that in a certain right-hand side neighbourhood of 0 the function
y = ¢**1(t) is a convex function. Let yh be a projection of the point z € F
at the set B, i.e., such point of the set B that p(z,y)) = p(x, B). Let L be
a tangent line to the set B at the point y5, and let y € L N S,(p,r), where
Sp(p, ) denotes the sphere with the centre at the point p € E and the radius
r > 0 in the metric space (F, p). From here, on the base of the inequality (24),
it follows that

p(y,y) < px,y3) < pla, B) (28)
Hence and from the triangle inequality we get
pla,y2) < p(x,y) < pla,ys) + p(ya,y) < 2p(x, B) (29)

Putting p = 2, 63 = min(%, <), from the inequality (29) we obtain
p(z,ys) _ 2p(x,B) _ €

pE(p,z) = pF(p,x) 2
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which yields the inequality (25).

Let p = 2, 6 = min(61,02,03) and let (x,y) be an arbitrary pair of
points belonging to the set [C,p; i, k|. In this example: p(z,C) = p(z, A),
or p(x,C) = p(x,B),or xeC.

Let us suppose that p(x,C) = p(x, A). From here, from the triangle inequal-
ity, from (21) and (22) it follows that for an arbitrary € > 0 there exists § > 0
such that for every pair of points (z,y) € [C, p; u, k], if

pz,C)

<6
PF(p, x)

r=p(p,x) <6 and

then
px.y) _ pley)  plysyn) _ plesyn) 1
< n < + L Cns,pr)<e  (30)
T R T T I (
Similarly, if p(x,C) = p(x, B) then from here, from the triangle inequality,
from (21) and (25) it follows that for an arbitrary € > 0 there exists § > 0
such that for every pair of points (z,y) € [C, p; u, k], if

pz,C)
Pk (p, )

<6

r=p(p,xr) <6 and

then
plxy) _ plz,ys) | py.y2) _ pla,ys)
I’ s 3 S
P, ) ~ pF(px) - pR(pix) T PP a)
If = € C, then from (21) it follows immediately that for an arbitrary € > 0

+ Tikdp(c NSy(pr)) <e  (31)

there exists § > 0 such that for every pair of points (z,y) € [C, p; u, k]

pla,y) _ 1
Y -
,Ok(p, 37) — Tk dﬂ(C N Sp(p,r)) <e (32)
when
p(z, C)
r=p(p,x) <6 and =0<$
pp,) Pk (p, )

Hence, from (30) and (31) it follows that the set C defined by the formula
(16) belongs to the class Mp’k.

Evidently, the set C' of the form (16) has the Darboux property at the point p
of the metric space (F, p). From the above it follows that C' € J/\Zp’k ND,(E, p).

Because the sets A, B defined by the formula (17) have the Darboux

property at the point p of the space (E, 1), and are subsets of the set C' € M, ,
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then from here and from Theorem 2.3 of the paper [7] it follows that the set
A is (a,b)-tangent of order k (k € N) to the set B at the point p of the space
(E,1), when [ € §¢, and the functions a, b fulfil the condition

ar) o and Mg (33)

T‘k r—0+ T‘k r—0+
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