The website: http://www.amcm.pcz.pl/

Scientific Research of the Institute of Mathematics and Computer Science

THE SETS OF CERTAIN CLASSES IN GENERALIZED METRIC SPACES

Tadeusz Konik

Institute of Mathematics and Computer Science, Czestochowa University of Technology

Abstract. In this paper some property of sets of certain classes in the generalized metric spaces are considered. In last section of this paper an example of a certain set of these classes in two-dimensional Euklidean space will be given.

1. Introduction

Let E be a certain non-empty set and let l be any non-negative real function defined on the Cartesian product $E_0 \times E_0$ of the family E_0 of all non-empty subsets of the set E. The pair (E, l) we shall call the generalized metric space.

Let a, b be arbitrary non-negative real functions defined in a certain right-hand side neighbourhood of 0 such that

$$a(r) \xrightarrow[r \to 0^+]{} 0 \text{ and } b(r) \xrightarrow[r \to 0^+]{} 0$$
 (1)

By $S_l(p,r)_{a(r)}$ and $S_l(p,r)_{b(r)}$ we denote in this paper so-called a(r), b(r)-neighbourhoods of the sphere $S_l(p,r)$ with the centre at the point p and the radius r in the space (E,l).

We say that the pair (A, B) of sets of the family E_0 is (a, b)-clustered at the point p of the space (E, l), if 0 is the cluster point of the set of all numbers r > 0 such that $A \cap S_l(p, r)_{a(r)} \neq \emptyset$ and $B \cap S_l(p, r)_{b(r)} \neq \emptyset$.

Let k be any, but fixed positive real number, and let by the definition (see the paper [9]):

$$T_l(a, b, k, p) = \{(A, B) : A, B \in E_0, \text{ the pair } (A, B) \text{ is } (a, b)\text{-clustered}$$

at the point p of the space (E, l) and

$$\frac{1}{r^k}l(A \cap S_l(p,r)_{a(r)}, B \cap S_l(p,r)_{b(r)}) \xrightarrow[r \to 0^+]{} 0\}$$
 (2)

The set $T_l(a, b, k, p)$ defined by the formula (2) we call the relation of (a, b)-tangency of order k at the point p (shortly: the tangency relation) of sets in the generalized metric space (E, l).

If $(A, B) \in T_l(a, b, k, p)$, then we say that the set $A \in E_0$ is (a, b)-tangent of order k to the set $B \in E_0$ at the point p of the space (E, l).

We say (see [3]) that the set $A \in E_0$ has the Darboux property at the point p of the generalized metric space (E, l), and we shall write this as: $A \in D_p(E, l)$, if there exists a number $\tau > 0$ such that $A \cap S_l(p, r) \neq \emptyset$ for $r \in (0, \tau)$.

In this paper we shall consider certain problems concerning the tangency of sets of the classes $\widetilde{M}_{p,k}$ having the Darboux property at the point p of the generalized metric spaces (E,l), for $l \in \mathfrak{F}_f$. A certain theorem for the sets of these classes will be given here.

2. On a certain theorem

Let ρ be an arbitrary metric of the set E. We shall denote by $d_{\rho}A$ the diameter of the set $A \in E_0$, and by $\rho(A, B)$ the distance of sets $A, B \in E_0$ in the metric space (E, ρ) .

Let f be any subadditive increasing real function defined in a certain right-hand side neighbourhood of 0, such that f(0) = 0.

By \mathfrak{F}_f we will denote the class of all functions l fulfilling the conditions:

$$1^0 \quad l: E_0 \times E_0 \longrightarrow \langle 0, \infty \rangle,$$

$$2^0$$
 $f(\rho(A,B)) \le l(A,B) \le f(d_{\rho}(A \cup B))$ for $A,B \in E_0$.

It is easy to check that every function $l \in \mathfrak{F}_f$ generates in the set E the metric l_0 defined by the formula:

$$l_0(x,y) = f(\rho(x,y)) \quad \text{for} \quad x, y \in E$$
(3)

Let us put by definition (see [6])

$$\widetilde{M}_{p,k} = \{A \in E_0 : p \in A' \text{ and there exists } \mu > 0 \text{ such that }$$

for an arbitrary $\varepsilon > 0$ there exists $\delta > 0$ such that

for every pair of points $(x, y) \in [A, p; \mu, k]$

if
$$\rho(p,x) < \delta$$
 and $\frac{\rho(x,A)}{\rho^k(p,x)} < \delta$, then $\frac{\rho(x,y)}{\rho^k(p,x)} < \varepsilon$ (4)

where A' is the set of all cluster points of the set $A \in E_0$ and

$$[A, p; \mu, k] = \{(x, y) : x \in E, y \in A \text{ and } \mu \rho(x, A) < \rho^k(p, x) = \rho^k(p, y)\}$$
 (5)

Theorem 1. If the set $A \in E_0$ is (a,b)-tangent of order k to the set $B \in E_0$ at the point $p \in E$ for an arbitrary function $l \in \mathfrak{F}_f$ and for every point x such

that $(x,y) \in [A,p;\mu,k]$ there exists a point $\widetilde{y} \in A \cap S_l(p,r)_{a(r)}$ and $\lambda > 0$ such that

$$\rho(x, \widetilde{y}) \le \lambda \rho(x, A) \tag{6}$$

then A is the set of the class $\widetilde{M}_{p,k}$.

Proof. Let $(A, B) \in T_l(a, b, k, p)$ for $l \in \mathfrak{F}_f$ and $A, B \in E_0$. From here, in particular, it follows that

$$(A, B) \in T_l(a, b, k, p)$$
 for $l \in \mathfrak{F}_{id}$ and $A, B \in E_0$ (7)

where id denotes the identity function defined in a certain right-hand side neighbouhood of 0. Because every function $l \in \mathfrak{F}_{id}$ generates in the set E the metric ρ (see definition of the class \mathfrak{F}_f), then from here and from (7) follows

$$\frac{1}{r^k}l(A \cap S_l(p,r)_{a(r)}, B \cap S_l(p,r)_{b(r)}) \xrightarrow[r \to 0^+]{} 0$$
(8)

Putting $l = d_{\rho}$, from (8) we get

$$\frac{1}{r^k} d_{\rho}((A \cap S_l(p, r)_{a(r)}) \cup (B \cap S_l(p, r)_{b(r)})) \xrightarrow[r \to 0^+]{} 0 \tag{9}$$

Because

$$d_{\rho}(A \cap S_l(p,r)_{a(r)}) \le d_{\rho}((A \cap S_l(p,r)_{a(r)}) \cup (B \cap S_l(p,r)_{b(r)}))$$

then from here, from (9) we obtain

$$\frac{1}{r^k} d_{\rho}(A \cap S_l(p, r)_{a(r)}) \xrightarrow[r \to 0^+]{} 0 \tag{10}$$

From (10) it follows that for an arbitrary $\varepsilon > 0$ there exists $\delta_1 > 0$ such that

$$\frac{1}{r^k} d_{\rho}(A \cap S_{\rho}(p, r)_{a(r)}) < \frac{\varepsilon}{2} \quad \text{for} \quad 0 < r < \delta_1$$
 (11)

Now we shall prove that for every pair of points (x, y) of the set $[A, p; \mu, k]$

$$\frac{\rho(x,y)}{\rho^k(p,x)} < \varepsilon \tag{12}$$

if only

$$r = \rho(p, x) < \delta \text{ and } \frac{\rho(x, A)}{\rho^k(p, x)} < \delta$$
 (13)

Let us put $\mu = 1$ and $\delta = \min(1, \frac{\varepsilon}{2\lambda}, \delta_1)$. From here, from (6), (11) and from the triangle inequality we have

$$\frac{\rho(x,y)}{\rho^k(p,x)} \leq \frac{\rho(x,\widetilde{y})}{\rho^k(p,x)} + \frac{\rho(\widetilde{y},y)}{\rho^k(p,x)} < \frac{1}{r^k} d_\rho(A \cap S_\rho(p,r)_{a(r)}) + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

what means that A is the set of the class $\widetilde{M}_{p,k}$.

3. On a certain set of the class $\widetilde{M}_{p,k}$

In this Section we will give an example of a certain set of the class $\widetilde{M}_{p,k}$ in two-dimensional Euklidean space, and will use Theorem 2.3 of the paper [7] for certain subsets of this set.

Example 1. Let $E = \mathbb{R}^2$ be the two-dimensional Euclidean space. Let φ be a increasing function of the class C_1 (homogenous function together with 1st derivative) defined in a certain right-hand side neighbourhood of 0 such that $\varphi(0) = 0$. Using the de L'Hospital's theorem and mathematical induction for $k \in \mathbb{N}$ we can easily prove that

$$\frac{\varphi^{k+1}(t)}{t^k} \xrightarrow[t \to 0^+]{} 0 \tag{14}$$

From this it follows immediately

$$\frac{\varphi^{2k+2}(t)}{t^{2k}} \xrightarrow[t \to 0^+]{} 0 \tag{15}$$

Let us put

$$C = \{(x, y) : x \ge 0, \ 0 \le y \le \varphi^{k+1}(x) \text{ and } k \in \mathbf{N}\}$$
 (16)

We shall prove that C defined by the formula (16) is the set of the class $\widetilde{M}_{p,k}$, where p = (0,0). For this purpose let us denote

$$A = \{(t,0): t \ge 0\} \text{ and } B = \{(t,\varphi^{k+1}(t)): t \ge 0, k \in \mathbb{N}\}$$
 (17)

Let y_1 , y_2 be a points of the set C such that

$$y_1 \in A \cap S_\rho(p, r), \quad y_2 \in B \cap S_\rho(p, r) \quad \text{for} \quad r > 0$$
 (18)

If according to (17) and (18) we put $y_2 = (t, \varphi^{k+1}(t))$, then

$$r = \rho(p, y_2) = \sqrt{t^2 + \varphi^{2k+2}(t)}$$
 (19)

Hence it follows that $y_1 = (\sqrt{t^2 + \varphi^{2k+2}(t)}, 0)$. From (19) and from the properties of the function φ it results also that $r \to 0^+$ if and only if $t \to 0^+$. Hence and from the conditions (14), (15), (19) for r > 0 we have

$$\frac{1}{r^{2k}}\rho^{2}(y_{1},y_{2}) = \frac{(\sqrt{t^{2} + \varphi^{2k+2}(t)} - t)^{2} + \varphi^{2k+2}(t)}{(t^{2} + \varphi^{2k+2}(t))^{k}}$$

$$= 2\frac{t^{2} + \varphi^{2k+2}(t) - t\sqrt{t^{2} + \varphi^{2k+2}(t)}}{(t^{2} + \varphi^{2k+2}(t))^{k}}$$

$$= 2\frac{\varphi^{2k+2}(t) + t^{2} - t\sqrt{t^{2} + \varphi^{2k+2}(t)}}{t^{2k}} \frac{1}{(1 + \varphi^{2k+2}(t)/t^{2})^{k}}$$

$$\xrightarrow{t \to 0^{+}} 2\left(\frac{\varphi^{2k+2}(t)}{t^{2k}} + \frac{t - \sqrt{t^{2} + \varphi^{2k+2}(t)}}{t^{2k-1}}\right)$$

$$= 2\left(\frac{\varphi^{2k+2}(t)}{t^{2k}} - \frac{\varphi^{2k+2}(t)}{t^{2k-1}(\sqrt{t^{2} + \varphi^{2k+2}(t)} + t)}\right)$$

$$= 2\left(\frac{\varphi^{2k+2}(t)}{t^{2k}} - \frac{\varphi^{2k+2}(t)}{t^{2k}(\sqrt{1 + \varphi^{2k+2}(t)/t^{2}} + 1)}\right)$$

$$= 2\frac{\varphi^{2k+2}(t)}{t^{2k}} \left(1 - \frac{1}{1 + \sqrt{1 + \varphi^{2k+2}(t)/t^{2}}}\right) \xrightarrow{t \to 0^{+}} \left(\frac{\varphi^{k+1}(t)}{t^{k}}\right)^{2} \xrightarrow{t \to 0^{+}} 0$$

what means that

$$\frac{1}{r^k} d_{\rho}(C \cap S_{\rho}(p, r)) \xrightarrow[r \to 0^+]{} 0 \tag{20}$$

From here it follows that for an arbitrary $\varepsilon > 0$ there exists $\delta_1 > 0$ such that

$$\frac{1}{r^k} d_{\rho}(C \cap S_{\rho}(p, r)) < \frac{\varepsilon}{2} \quad \text{for} \quad 0 < r < \delta_1$$
 (21)

Now we shall prove that for an arbitrary $\varepsilon > 0$ there exists $\delta_2 > 0$ such that for every pair of points $(x, y_1) \in [A, p; \mu, k]$

$$\frac{\rho(x, y_1)}{\rho^k(p, x)} < \frac{\varepsilon}{2} \tag{22}$$

when

$$r = \rho(p, x) < \delta_2$$
 and $\frac{\rho(x, A)}{\rho^k(p, x)} < \delta_2$ (23)

Let y_1' be a projection of the point $x \in E$ at the set A, i.e., such point of the set A that $\rho(x, y_1') = \rho(x, A)$. Because $x = (t, \pm \sqrt{r^2 - t^2})$ for $0 \le t < r$, then

$$\rho(y_1',y) = r - t = \sqrt{(r-t)^2} \le \sqrt{(r+t)(r-t)} = \sqrt{r^2 - t^2} = \rho(x,y_1')$$

that is to say,

$$\rho(y_1', y) \le \rho(x, A) \tag{24}$$

Let $\mu = 2$, $\delta_2 = \min(\frac{1}{2}, \frac{\varepsilon}{4})$. Hence, from (23), (24) and from the triangle inequality we have

$$\frac{\rho(x,y_1)}{\rho^k(p,x)} \le \frac{\rho(x,y_1') + \rho(y_1',y)}{\rho^k(p,x)} \le \frac{2\rho(x,A)}{\rho^k(p,x)} < \frac{\varepsilon}{2}$$

which yields the inequality (22).

Lastly we shall prove that for an arbitrary $\varepsilon > 0$ there exists $\delta_3 > 0$ such that for every pair of points $(x, y_2) \in [B, p; \mu, k]$

$$\frac{\rho(x, y_2)}{\rho^k(p, x)} < \frac{\varepsilon}{2} \tag{25}$$

if only

$$r = \rho(p, x) < \delta_3$$
 and $\frac{\rho(x, B)}{\rho^k(p, x)} < \delta_3$ (26)

From the properties of the function φ it follows that

$$(\varphi^{k+1}(t))'|_{t=0} = 0 (27)$$

what means that the set B is tangent to the axis x at the point p. From here it follows that in a certain right-hand side neighbourhood of 0 the function $y = \varphi^{k+1}(t)$ is a convex function. Let y'_2 be a projection of the point $x \in E$ at the set B, i.e., such point of the set B that $\rho(x, y'_2) = \rho(x, B)$. Let L be a tangent line to the set B at the point y'_2 , and let $y \in L \cap S_\rho(p, r)$, where $S_\rho(p, r)$ denotes the sphere with the centre at the point $p \in E$ and the radius r > 0 in the metric space (E, ρ) . From here, on the base of the inequality (24), it follows that

$$\rho(y_2', y) \le \rho(x, y_2') \le \rho(x, B)$$
 (28)

Hence and from the triangle inequality we get

$$\rho(x, y_2) \le \rho(x, y) \le \rho(x, y_2') + \rho(y_2', y) \le 2\rho(x, B)$$
(29)

Putting $\mu = 2$, $\delta_3 = \min(\frac{1}{2}, \frac{\varepsilon}{4})$, from the inequality (29) we obtain

$$\frac{\rho(x, y_2)}{\rho^k(p, x)} \le \frac{2\rho(x, B)}{\rho^k(p, x)} < \frac{\varepsilon}{2}$$

which yields the inequality (25).

Let $\mu = 2$, $\delta = \min(\delta_1, \delta_2, \delta_3)$ and let (x, y) be an arbitrary pair of points belonging to the set $[C, p; \mu, k]$. In this example: $\rho(x, C) = \rho(x, A)$, or $\rho(x, C) = \rho(x, B)$, or $x \in C$.

Let us suppose that $\rho(x,C) = \rho(x,A)$. From here, from the triangle inequality, from (21) and (22) it follows that for an arbitrary $\varepsilon > 0$ there exists $\delta > 0$ such that for every pair of points $(x,y) \in [C,p;\mu,k]$, if

$$r = \rho(p, x) < \delta$$
 and $\frac{\rho(x, C)}{\rho^k(p, x)} < \delta$

then

$$\frac{\rho(x,y)}{\rho^{k}(p,x)} \le \frac{\rho(x,y_{1})}{\rho^{k}(p,x)} + \frac{\rho(y,y_{1})}{\rho^{k}(p,x)} \le \frac{\rho(x,y_{1})}{\rho^{k}(p,x)} + \frac{1}{r^{k}} d_{\rho}(C \cap S_{\rho}(p,r)) < \varepsilon \tag{30}$$

Similarly, if $\rho(x, C) = \rho(x, B)$ then from here, from the triangle inequality, from (21) and (25) it follows that for an arbitrary $\varepsilon > 0$ there exists $\delta > 0$ such that for every pair of points $(x, y) \in [C, p; \mu, k]$, if

$$r = \rho(p, x) < \delta$$
 and $\frac{\rho(x, C)}{\rho^k(p, x)} < \delta$

then

$$\frac{\rho(x,y)}{\rho^{k}(p,x)} \le \frac{\rho(x,y_2)}{\rho^{k}(p,x)} + \frac{\rho(y,y_2)}{\rho^{k}(p,x)} \le \frac{\rho(x,y_2)}{\rho^{k}(p,x)} + \frac{1}{r^{k}} d_{\rho}(C \cap S_{\rho}(p,r)) < \varepsilon \tag{31}$$

If $x \in C$, then from (21) it follows immediately that for an arbitrary $\varepsilon > 0$ there exists $\delta > 0$ such that for every pair of points $(x, y) \in [C, p; \mu, k]$

$$\frac{\rho(x,y)}{\rho^k(p,x)} \le \frac{1}{r^k} d_\rho(C \cap S_\rho(p,r)) < \varepsilon \tag{32}$$

when

$$r = \rho(p, x) < \delta$$
 and $\frac{\rho(x, C)}{\rho^k(p, x)} = 0 < \delta$

Hence, from (30) and (31) it follows that the set C defined by the formula (16) belongs to the class $\widetilde{M}_{p,k}$.

Evidently, the set C of the form (16) has the Darboux property at the point p of the metric space (E, ρ) . From the above it follows that $C \in \widetilde{M}_{p,k} \cap D_p(E, \rho)$.

Because the sets A, B defined by the formula (17) have the Darboux property at the point p of the space (E, l), and are subsets of the set $C \in \widetilde{M}_{p,k}$,

then from here and from Theorem 2.3 of the paper [7] it follows that the set A is (a,b)-tangent of order k $(k \in \mathbb{N})$ to the set B at the point p of the space (E,l), when $l \in \mathfrak{F}_f$, and the functions a,b fulfil the condition

$$\frac{a(r)}{r^k} \xrightarrow[r \to 0^+]{} 0 \quad \text{and} \quad \frac{b(r)}{r^k} \xrightarrow[r \to 0^+]{} 0$$
 (33)

References

- [1] Chądzyńska A., On some classes of sets related to the symmetry of the tangency relation in a metric space, Ann. Soc. Math. Polon., Comm. Math. 1972, 16, 219-228.
- [2] Gołąb S., Moszner Z., Sur le contact des courbes dans les espaces metriques généraux, Colloq. Math. 1963, 10, 105-311.
- [3] Konik T., On the reflexivity symmetry and transitivity of the tangency relations of sets of the class $\widetilde{M}_{p,k}$, J. Geom. 1995, 52, 142-151.
- [4] Konik T., On some tangency relation of sets, Publ. Math. Debrecen 1999, 55/3-4, 411-419.
- [5] Konik T., On the compatibility and the equivalence of the tangency relations of sets of the classes $A_{p,k}^*$, J. Geom. 1998, 63, 124-133.
- [6] Konik T., On the sets of the classes $\widetilde{M}_{p,k}$, Demonstratio Math. 2000, 33(2), 407-417.
- [7] Konik T., On sets of some classes and their tangency, Scientific Research of the Institute of Mathematics and Computer Science of Czestochowa University of Technology PPAM 2003, 1(2), 61-68.
- [8] Waliszewski W., On the tangency of sets in a metric space, Colloq. Math. 1966, 15, 127-131.
- [9] Waliszewski W., On the tangency of sets in generalized metric spaces, Ann. Polon. Math. 1973, 28, 275-284.